
Informix Guide to SQL®
Tutorial

Informix Dynamic Server, Version 7.3
Informix Dynamic Server with Advanced Decision Support and Extended Parallel Options, Version 8.2
Informix Dynamic Server, Developer Edition, Version 7.3
Informix Dynamic Server, Workgroup Edition, Version 7.3
February 1998
Part No. 000-4366

ii Informix Guide to SQL
Published by INFORMIX Press Informix Software, Inc.
4100 Bohannon Drive
Menlo Park, CA 94025-1032

Copyright  1981-1998 by Informix Software, Inc. or its subsidiaries, provided that portions may be
copyrighted by third parties, as set forth in documentation. All rights reserved.

The following are worldwide trademarks of Informix Software, Inc., or its subsidiaries, registered in the
United States of America as indicated by “,” and in numerous other countries worldwide:

Answers OnLine; INFORMIX; Informix; Illustra; C-ISAM; DataBlade; Dynamic Server; Gateway;
NewEra

All other names or marks may be registered trademarks or trademarks of their respective owners.

Documentation Team: Brian Deutscher, Evelyn Eldridge-Diaz, Geeta Karmarkar

RESTRICTED RIGHTS/SPECIAL LICENSE RIGHTS

Software and documentation acquired with US Government funds are provided with rights as follows: (1) if
for civilian agency use, with Restricted Rights as defined in FAR 52.227-19; (2) if for Dept. of Defense use, with
rights as restricted by vendor's standard license, unless superseded by negotiated vendor license as prescribed
in DFAR 227.7202. Any whole or partial reproduction of software or documentation marked with this legend
must reproduce the legend.
: Tutorial

Table of Contents

Table of
Contents
Introduction
About This Manual 3

Types of Users 3
Software Dependencies 4
Assumptions About Your Locale. 4
Demonstration Databases 5

New Features . 5
New Features in Version 7.3 6
New Features in Version 8.2 6

Documentation Conventions 7
Typographical Conventions 8
Icon Conventions 9
Sample-Code Conventions 11

Additional Documentation 12
On-Line Manuals 12
Printed Manuals 13
Error Message Files 13
Documentation Notes, Release Notes, Machine Notes 13
Related Reading 15

Compliance with Industry Standards 15
Informix Welcomes Your Comments 16

Section I Using Basic SQL

Chapter 1 Database Concepts
Illustration of a Data Model 1-4

Storing Data 1-6
Querying Data 1-6
Modifying Data 1-9

iv Inform
Concurrent Use and Security 1-9
Controlling Database Use 1-9
Centralized Management 1-10

Important Database Terms 1-11
The Relational Model 1-11
Tables. 1-12
Columns. 1-13
Rows . 1-13
Operations on Tables 1-13

Structured Query Language 1-15
Standard SQL 1-15
Informix SQL and ANSI SQL 1-16
ANSI-Compliant Databases 1-17
GLS Databases 1-17

Database Software 1-17
Applications 1-18
Database Server 1-18
Interactive SQL 1-18
General Programming 1-19

Summary . 1-19

Chapter 2 Composing Simple SELECT Statements
Introducing the SELECT Statement 2-4

Some Basic Concepts 2-5
The Forms of SELECT 2-10
Special Data Types 2-11

Single-Table SELECT Statements 2-11
Selecting All Columns and Rows 2-12
Selecting Specific Columns 2-18
Using the WHERE Clause. 2-28
Creating a Comparison Condition 2-29
Using a FIRST Clause to Select Specific Rows 2-46
Expressions and Derived Values 2-49
Using Functions in SELECT Statements 2-57
Using Stored Procedures in SELECT Statements 2-86

Multiple-Table SELECT Statements 2-88
Creating a Cartesian Product. 2-88
Creating a Join. 2-90
Some Query Shortcuts 2-96

Selecting Tables from a Database Other Than the Current Database . 2-101
Summary . 2-102
ix Guide to SQL: Tutorial

Chapter 3 Composing Advanced SELECT Statements
Using the GROUP BY and HAVING Clauses 3-4

Using the GROUP BY Clause 3-4
Using the HAVING Clause 3-8

Creating Advanced Joins 3-10
Self-Joins . 3-11
Outer Joins 3-20

Subqueries in SELECT Statements 3-30
Using ALL 3-31
Using ANY 3-32
Single-Valued Subqueries 3-33
Correlated Subqueries 3-35
Using EXISTS 3-36

Set Operations 3-39
Union . 3-40
Intersection 3-48
Difference . 3-50

Summary . 3-52

Chapter 4 Modifying Data
Statements That Modify Data 4-3
Deleting Rows 4-4

Deleting All Rows of a Table 4-4
Deleting a Known Number of Rows. 4-5
Deleting an Unknown Number of Rows 4-5
Complicated Delete Conditions 4-6

Inserting Rows 4-7
Single Rows 4-7
Multiple Rows and Expressions 4-10
Restrictions on the Insert Selection 4-11

Updating Rows 4-12
Selecting Rows to Update 4-13
Updating with Uniform Values 4-14
Restrictions on Updates 4-15
Updating with Selected Values 4-15
Using a CASE Expression to Update a Column 4-16
Using a Join to Update a Column. 4-17

Privileges on a Database 4-17
Database-Level Privileges 4-18
Table-Level Privileges 4-18
Displaying Table Privileges. 4-19
Table of Contents v

vi Inform
Data Integrity 4-20
Entity Integrity 4-21
Semantic Integrity 4-21
Referential Integrity 4-22
Object Modes and Violation Detection 4-26

Interrupted Modifications 4-28
Transactions 4-30
Transaction Logging. 4-30
Specifying Transactions 4-32

Backups and Logs with Informix Database Servers 4-33
Concurrency and Locks 4-34
Data Replication 4-35

Informix Database Server Data Replication 4-36
Summary . 4-37

Chapter 5 Programming with SQL
SQL in Programs 5-4

SQL in SQL APIs 5-4
SQL in Application Languages 5-5
Static Embedding 5-5
Dynamic Statements 5-5
Program Variables and Host Variables 5-6

Calling the Database Server 5-8
SQL Communications Area 5-8
SQLCODE Field 5-9
SQLERRD Array 5-10
SQLWARN Array 5-11
SQLERRM Character Array 5-13
SQLSTATE Value 5-13

Retrieving Single Rows 5-14
Data-Type Conversion 5-15
Working with Null Data 5-16
Dealing with Errors 5-17

Retrieving Multiple Rows 5-20
Declaring a Cursor 5-20
Opening a Cursor 5-21
Fetching Rows. 5-22
Cursor Input Modes. 5-23
Active Set of a Cursor 5-24
Using a Cursor: A Parts Explosion 5-27
ix Guide to SQL: Tutorial

Dynamic SQL . 5-29
Preparing a Statement 5-30
Executing Prepared SQL. 5-31
Dynamic Host Variables 5-32
Freeing Prepared Statements 5-33
Quick Execution 5-33

Embedding Data-Definition Statements 5-34
Embedding Grant and Revoke Privileges 5-34
Summary . 5-37

Chapter 6 Modifying Data Through SQL Programs
Using DELETE 6-3

Direct Deletions. 6-4
Deleting with a Cursor 6-7

Using INSERT 6-9
Using an Insert Cursor 6-9
Rows of Constants 6-12
An Insert Example 6-12

Using UPDATE 6-15
Using an Update Cursor. 6-15
Cleaning Up a Table 6-17

Summary . 6-18

Chapter 7 Programming for a Multiuser Environment
Concurrency and Performance 7-3
Locking and Integrity 7-3
Locking and Performance 7-4
Concurrency Issues 7-4
How Locks Work 7-6

Kinds of Locks 7-7
Lock Scope 7-7
Duration of a Lock. 7-11
Locks While Modifying 7-11

Setting the Isolation Level 7-12
Comparing SET TRANSACTION with SET ISOLATION . . . 7-12
ANSI Read Uncommitted and Informix Dirty Read Isolation . . 7-14
ANSI Read Committed and Informix Committed Read Isolation . 7-14
Informix Cursor Stability Isolation 7-15
ANSI Serializable, ANSI Repeatable Read, and

Informix Repeatable Read Isolation. 7-17
Table of Contents vii

viii Infor
Controlling Data Modification with Access Modes 7-18
Setting the Lock Mode 7-19

Waiting for Locks. 7-19
Not Waiting for Locks 7-19
Waiting a Limited Time 7-20
Handling a Deadlock 7-20
Handling External Deadlock 7-21

Simple Concurrency 7-21
Hold Cursors 7-21
Summary . 7-23

Section II Using Advanced SQL

Chapter 8 Creating and Using Stored Procedures
Introduction to Stored Procedures and SPL 8-3

What You Can Do with Stored Procedures 8-4
Relationship Between SQL and a Stored Procedure 8-4

Stored-Procedure Behavior for Dynamic Server
with AD and XP Options 8-5

Creating and Using Stored Procedures 8-6
Creating a Procedure 8-6
Creating a Procedure in a Program. 8-7
Commenting and Documenting a Procedure 8-8
Diagnosing Compile-Time Errors 8-8
Looking at Compile-Time Warnings 8-10
Generating the Text or Documentation 8-11
Executing a Procedure 8-12
Executing a Stored Procedure Dynamically 8-14
Debugging a Procedure 8-14

Privileges on Stored Procedures 8-17
Privileges Necessary at Creation 8-18
Privileges Necessary at Execution 8-18
Revoking Privileges 8-20

Variables and Expressions 8-20
SPL Variables 8-20
SPL Expressions 8-25

Program Flow Control 8-26
Branching 8-26
Looping . 8-27
Function Handling 8-28
mix Guide to SQL: Tutorial

Passing Information to and from a Procedure 8-29
Returning Results 8-30

Exception Handling 8-32
Trapping an Error and Recovering 8-32
Scope of Control of an ON EXCEPTION Statement 8-33
User-Generated Exceptions. 8-34

Summary . 8-36

Chapter 9 Creating and Using Triggers
When to Use Triggers 9-3
How to Create a Trigger 9-4

Assigning a Trigger Name 9-5
Specifying the Trigger Event 9-5
Defining the Triggered Actions 9-6
A Complete CREATE TRIGGER Statement 9-7

Using Triggered Actions 9-7
Using BEFORE and AFTER Triggered Actions 9-7
Using FOR EACH ROW Triggered Actions 9-9
Using Stored Procedures as Triggered Actions 9-11

Reentrant Triggers for Dynamic Server 9-13
Tracing Triggered Actions 9-13

Example of TRACE Statements in a Stored Procedure 9-14
Example of TRACE Output. 9-14

Generating Error Messages 9-15
Applying a Fixed Error Message 9-15
Generating a Variable Error Message 9-17

Summary . 9-18

Index
Table of Contents ix

Introduction

Introduction
About This Manual 3
Types of Users 3
Software Dependencies 4
Assumptions About Your Locale 4
Demonstration Databases 5

New Features . 5
New Features in Version 7.3 6
New Features in Version 8.2 6

Documentation Conventions 7
Typographical Conventions 8
Icon Conventions 9

Comment Icons 9
Feature, Product, and Platform Icons 10
Compliance Icons 11

Sample-Code Conventions 11

Additional Documentation 12
On-Line Manuals 12
Printed Manuals 13
Error Message Files 13
Documentation Notes, Release Notes, Machine Notes 13
Related Reading 15

Compliance with Industry Standards 15

Informix Welcomes Your Comments 16

2 Inform
ix Guide to SQL: Tutorial

R ead this introduction for an overview of the information
provided in this manual and for an understanding of the documentation
conventions used.

About This Manual
This manual shows how to use basic and advanced Structured Query
Language (SQL) to access and manipulate the data in your databases. It
discusses the data manipulation language (DML) statements as well as
triggers and stored procedures, which DML statements often use.

This manual is one of a series of manuals that discusses the Informix imple-
mentation of Structured Query Language (SQL). This manual shows how to
use basic and advanced SQL. The Informix Guide to SQL: Syntax contains all
the syntax descriptions for SQL and stored procedure language (SPL). The
Informix Guide to SQL: Reference provides reference information for aspects of
SQL other than the language statements. The Informix Guide to Database Design
and Implementation shows how to use SQL to implement and manage your
databases.

Types of Users
This manual is for the following users:

■ Database-application programmers

■ Database users

■ Database administrators
Introduction 3

Software Dependencies
This manual assumes that you have the following background:

■ A working knowledge of your computer, your operating system,
and the utilities that your operating system provides

■ Some experience working with relational databases or exposure to
database concepts

■ Some experience with computer programming

If you have limited experience with relational databases, SQL, or your
operating system, refer to the Getting Started manual for your database server
for a list of supplementary titles.

Software Dependencies
This manual assumes that you are using one of the following database
servers:

■ Informix Dynamic Server, Version 7.3

■ Informix Dynamic Server with Advanced Decision Support and
Extended Parallel Options, Version 8.2

■ Informix Dynamic Server, Developer Edition, Version 7.3

■ Informix Dynamic Server, Workgroup Edition, Version 7.3

Assumptions About Your Locale
Informix products can support many languages, cultures, and code sets. All
culture-specific information is brought together in a single environment,
called a GLS (Global Language Support) locale.

This manual assumes that you are using the default locale, en_us.8859-1. This
locale supports U.S. English format conventions for dates, times, and
currency. In addition, this locale supports the ISO 8859-1 code set, which
includes the ASCII code set plus many 8-bit characters such as é, è, and ñ.

If you plan to use nondefault characters in your data or your SQL identifiers,
or if you want to conform to the nondefault collation rules of character data,
you need to specify the appropriate nondefault locale.
4 Informix Guide to SQL: Tutorial

Demonstration Databases
For instructions on how to specify a nondefault locale, additional syntax, and
other considerations related to GLS locales, see the Informix Guide to GLS
Functionality.

Demonstration Databases
The DB-Access utility, which is provided with your Informix database server
products, includes a demonstration database called stores7 that contains
information about a fictitious wholesale sporting-goods distributor. You can
use SQL scripts provided with DB-Access to derive a second database, called
sales_demo. This database illustrates a dimensional schema for data-
warehousing applications. Sample command files are also included for
creating and populating these databases.

Many examples in Informix manuals are based on the stores7 demonstration
database. The stores7 database is described in detail and its contents are
listed in the Informix Guide to SQL: Reference.

The scripts that you use to install the demonstration databases reside
in the $INFORMIXDIR/bin directory on UNIX platforms and the
%INFORMIXDIR%\bin directory on Windows NT platforms. For a complete
explanation of how to create and populate the stores7 demonstration
database, refer to the DB-Access User Manual. For an explanation of how to
create and populate the sales_demo database, refer to the Informix Guide to
Database Design and Implementation.

New Features
The following sections describe new database server features relevant to this
manual. For a comprehensive list of new features, see the release notes for
your database server.
Introduction 5

New Features in Version 7.3
New Features in Version 7.3
Most of the new features for Version 7.3 of Informix Dynamic Server fall into
five major areas:

■ Reliability, availability, and serviceability

■ Performance

■ Windows NT-specific features

■ Application migration

■ Manageability

Several additional features affect connectivity, replication, and the optical
subsystem.

This manual includes information about the following new features:

■ Performance: Enhancements to the SELECT statement to allow
selection of the first n rows.

■ Application migration:

❑ New functions for case-insensitive search (UPPER, LOWER,
INITCAP)

❑ New functions for string manipulations (REPLACE, SUBSTR,
LPAD, RPAD)

❑ New CASE expression

❑ New NVL and DECODE functions

❑ New date-conversion functions (TO_CHAR and TO_DATE)

❑ New options for the DBINFO function

❑ Enhancements to the CREATE VIEW and EXECUTE PROCEDURE
statements

New Features in Version 8.2
This manual describes the following new features that have been imple-
mented in Version 8.2 of Dynamic Server with AD and XP Options:

■ Global Language Support (GLS)

■ New aggregates: STDEV, RANGE, and VARIANCE
6 Informix Guide to SQL: Tutorial

Documentation Conventions
■ New TABLE lock mode for the LOCK MODE clause of ALTER TABLE
and CREATE TABLE statement

■ Support for specifying a lock on one or more rows for the Cursor
Stability isolation level

This manual also discusses the following features, which were introduced in
Version 8.1 of Dynamic Server with AD and XP Options:

■ The CASE expression in certain Structured Query Language (SQL)
statements

■ New join methods for use across multiple computers

■ Nonlogging tables

■ External tables for high-performance loading and unloading

Documentation Conventions
This section describes the conventions that this manual uses. These conven-
tions make it easier to gather information from this and other Informix
manuals.

The following conventions are covered:

■ Typographical conventions

■ Icon conventions

■ Sample-code conventions
Introduction 7

Typographical Conventions
Typographical Conventions
This manual uses the following standard set of conventions to introduce new
terms, illustrate screen displays, describe command syntax, and so forth.

Tip: When you are instructed to “enter” characters or to “execute” a command,
immediately press RETURN after you type the indicated information on your
keyboard. When you are instructed to “type” the text or to “press” other keys, you do
not need to press RETURN.

Convention Meaning

KEYWORD All keywords appear in uppercase letters in a serif font.

italics Within text, new terms and emphasized words appear in italics.
Within syntax diagrams, values that you are to specify appear
in italics.

boldface Identifiers (names of classes, objects, constants, events,
functions, program variables, forms, labels, and reports),
environment variables, database names, filenames, table
names, column names, icons, menu items, command names,
and other similar terms appear in boldface.

monospace Information that the product displays and information that you
enter appear in a monospace typeface.

KEYSTROKE Keys that you are to press appear in uppercase letters in a sans
serif font.

♦ This symbol indicates the end of feature-, product-, platform-,
or compliance-specific information within a table or section.

➞ This symbol indicates a menu item. For example, “Choose
Tools➞Options” means choose the Options item from the
Tools menu.
8 Informix Guide to SQL: Tutorial

Icon Conventions
Icon Conventions
Throughout the documentation, you will find text that is identified by several
different types of icons. This section describes these icons.

Comment Icons

Comment icons identify warnings, important notes, or tips. This information
is always displayed in italics.

Icon Description

The warning icon identifies vital instructions, cautions, or
critical information.

The important icon identifies significant information about
the feature or operation that is being described.

The tip icon identifies additional details or shortcuts for the
functionality that is being described.
Introduction 9

Icon Conventions
Feature, Product, and Platform Icons

Feature, product, and platform icons identify paragraphs that contain
feature-specific, product-specific, or platform-specific information.

These icons can apply to a row in a table, one or more paragraphs, or an entire
section. If an icon appears next to a section heading, the information that
applies to the indicated feature, product, or platform ends at the next heading
at the same or higher level. A ♦ symbol indicates the end of the feature-,
product-, or platform-specific information that appears within a table or a set
of paragraphs within a section.

Icon Description

Identifies information that is specific to Informix Dynamic
Server with Advanced Decision Support and Extended
Parallel Options.

Identifies information that is specific to the
INFORMIX-ESQL/C product.

Identifies information that relates to the Informix Global
Language Support (GLS) feature.

Identifies information that is specific to Dynamic Server
and its editions. However, in some cases, the identified
section applies only to Informix Dynamic Server and not to
Informix Dynamic Server, Workgroup and Developer
Editions. Such information is clearly identified.

Identifies information that is specific to UNIX platforms.

Identifies information that is specific to Informix Dynamic
Server, Workgroup and Developer Editions.

Identifies information that is specific to the Windows NT
environment.

AD/XP

E/C

GLS

IDS

UNIX

W/D

WIN NT
10 Informix Guide to SQL: Tutorial

Sample-Code Conventions
Compliance Icons

Compliance icons indicate paragraphs that provide guidelines for complying
with a standard.

These icons can apply to a row in a table, one or more paragraphs, or an entire
section. If an icon appears next to a section heading, the compliance infor-
mation ends at the next heading at the same or higher level. A ♦ symbol
indicates the end of compliance information that appears in a table row or a
set of paragraphs within a section.

Sample-Code Conventions
Examples of SQL code occur throughout this manual. Except where noted,
the code is not specific to any single Informix application development tool.
If only SQL statements are listed in the example, they are not delimited by
semicolons. For instance, you might see the code in the following example:

CONNECT TO stores7
...

DELETE FROM customer
WHERE customer_num = 121

...

COMMIT WORK
DISCONNECT CURRENT

Icon Description

Identifies information that is specific to an ANSI-compliant
database.

Identifies information that is an Informix extension to ANSI
SQL-92 entry-level standard SQL.

Identifies functionality that conforms to X/Open.

ANSI

+

X/O
Introduction 11

Additional Documentation
To use this SQL code for a specific product, you must apply the syntax rules
for that product. For example, if you are using the Query-language option of
DB-Access, you must delimit multiple statements with semicolons. If you are
using an SQL API, you must use EXEC SQL at the start of each statement and
a semicolon (or other appropriate delimiter) at the end of the statement.

Tip: Ellipsis points in a code example indicate that more code would be added in a
full application, but it is not necessary to show it to describe the concept being
discussed.

For detailed directions on how to use SQL statements for a particular appli-
cation development tool or SQL API, see the manual for your product.

Additional Documentation
For additional information, you might want to refer to the following types of
documentation:

■ On-line manuals

■ Printed manuals

■ Error message files

■ Documentation notes, release notes, and machine notes

■ Related reading

On-Line Manuals
An Answers OnLine CD that contains Informix manuals in electronic format
is provided with your Informix products. You can install the documentation
or access it directly from the CD. For information about how to install, read,
and print on-line manuals, see the installation insert that accompanies
Answers OnLine.
12 Informix Guide to SQL: Tutorial

Printed Manuals
Printed Manuals
To order printed manuals, call 1-800-331-1763 or send email to
moreinfo@informix.com. Please provide the following information when
you place your order:

■ The documentation that you need

■ The quantity that you need

■ Your name, address, and telephone number

Error Message Files
Informix software products provide ASCII files that contain all of the
Informix error messages and their corrective actions. For a detailed
description of these error messages, refer to Informix Error Messages in
Answers OnLine.

To read the error messages under UNIX, you can use the following
commands.

♦

To read error messages and corrective actions under Windows NT, use the
Informix Find Error utility. To display this utility, choose
Start➞Programs➞Informix from the Task Bar. ♦

Documentation Notes, Release Notes, Machine Notes
In addition to printed documentation, the following sections describe the on-
line files that supplement the information in this manual. Please examine
these files before you begin using your database server. They contain vital
information about application and performance issues.

Command Description

finderr Displays error messages on line

rofferr Formats error messages for printing

UNIX

WIN NT
Introduction 13

Documentation Notes, Release Notes, Machine Notes
On UNIX platforms, the following on-line files appear in the
$INFORMIXDIR/release/en_us/0333 directory.

♦

The following items appear in the Informix folder. To display this folder,
choose Start➞Programs➞Informix from the Task Bar.

Machine notes do not apply to Windows NT platforms. ♦

UNIX

On-Line File Purpose

SQLTDOC_x.y The documentation-notes file for your version of this manual
describes features that are not covered in the manual or that
have been modified since publication. Replace x.y in the
filename with the version number of your database server to
derive the name of the documentation-notes file for this manual.

SERVERS_x.y The release-notes file describes feature differences from earlier
versions of Informix products and how these differences might
affect current products. This file also contains information about
any known problems and their workarounds. Replace x.y in the
filename with the version number of your database server to
derive the name of the release-notes file.

IDS_x.y The machine-notes file describes any special actions that are
required to configure and use Informix products on your
computer. Machine notes are named for the product described.
Replace x.y in the filename with the version number of your
database server to derive the name of the machine-notes file.

Item Description

Documentation Notes This item includes additions or corrections to manuals,
along with information about features that may not be
covered in the manuals or that have been modified since
publication.

Release Notes This item describes feature differences from earlier
versions of Informix products and how these differ-
ences might affect current products. This file also
contains information about any known problems and
their workarounds.

WIN NT
14 Informix Guide to SQL: Tutorial

Related Reading
Related Reading
The following publications provide additional information about the topics
that are discussed in this manual. For a list of publications that provide an
introduction to database servers and operating-system platforms, refer to the
Getting Started manual.

■ A Guide to the SQL Standard by C. J. Date with H. Darwen (Addison-
Wesley Publishing, 1993)

■ Understanding the New SQL: A Complete Guide by J. Melton and A.
Simon (Morgan Kaufmann Publishers, 1993)

■ Using SQL by J. Groff and P. Weinberg (Osborne McGraw-Hill, 1990)

Compliance with Industry Standards
The American National Standards Institute (ANSI) has established a set of
industry standards for SQL. Informix SQL-based products are fully compliant
with SQL-92 Entry Level (published as ANSI X3.135-1992), which is identical
to ISO 9075:1992. In addition, many features of Informix database servers
comply with the SQL-92 Intermediate and Full Level and X/Open SQL CAE
(common applications environment) standards.
Introduction 15

Informix Welcomes Your Comments
Informix Welcomes Your Comments
Please tell us what you like or dislike about our manuals. To help us with
future versions of our manuals, we want to know about corrections or clari-
fications that you would find useful. Include the following information:

■ The name and version of the manual that you are using

■ Any comments that you have about the manual

■ Your name, address, and phone number

Write to us at the following address:

Informix Software, Inc.
SCT Technical Publications Department
4100 Bohannon Drive
Menlo Park, CA 94025

If you prefer to send email, our address is:

doc@informix.com

Or send a facsimile to the Informix Technical Publications Department at:

650-926-6571

We appreciate your feedback.
16 Informix Guide to SQL: Tutorial

on
 I
Using Basic SQL
Se
ct

i

1
Chapter
Database Concepts
Illustration of a Data Model 1-4
Storing Data . 1-6
Querying Data 1-6
Modifying Data. 1-9

Concurrent Use and Security 1-9
Controlling Database Use 1-9
Centralized Management 1-10

Important Database Terms 1-11
The Relational Model. 1-11
Tables . 1-12
Columns . 1-13
Rows . 1-13
Operations on Tables 1-13

Structured Query Language. 1-15
Standard SQL 1-15
Informix SQL and ANSI SQL 1-16
ANSI-Compliant Databases 1-17
GLS Databases 1-17

Database Software 1-17
Applications . 1-18
Database Server 1-18
Interactive SQL 1-18
General Programming 1-19

Summary . 1-19

1-2 Infor
mix Guide to SQL: Tutorial

This book is about databases and how you can use Informix software
to exploit them. As you start reading, keep in mind the following funda-
mental database characteristics:

■ A database comprises not only data but also a plan, or model, of the
data.

■ A database can be a common resource, used concurrently by many
people.

Your real use of a database begins with the SELECT statement, which is
described in Chapter 2, “Composing Simple SELECT Statements.” If you are
in a hurry, and if you know at least a little about databases, turn to it now.

This chapter covers the fundamental concepts of databases and defines some
terms that are used throughout the book. The chapter emphasizes the
following topics:

■ How does the data model differentiate a database from a file?

■ What issues are involved when many users use the database as a
common resource?

■ What terms are used to describe the main components of a database?

■ What language is used to create, query, and modify a database?

■ What are the main parts of the software that manages a database, and
how do these parts work with each other?
Database Concepts 1-3

Illustration of a Data Model
Illustration of a Data Model
The principal difference between information collected in a database versus
information collected in a file is the way the data is organized. A flat file is
organized physically; certain items precede or follow other items. But the
contents of a database are organized according to a data model. A data model
is a plan, or map, that defines the units of data and specifies how each unit is
related to the others.

For example, a number can appear in either a file or a database. In a file, it is
simply a number that occurs at a certain point in the file. A number in a
database, however, has a role that the data model assigns to it. It might be a
price that is associated with a product that was sold as one item of an order that
was placed by a customer. Each of these components, price, product, item,
order, and customer, also has a role that the data model specifies. See
Figure 1-1 for an illustration of a data model.
1-4 Informix Guide to SQL: Tutorial

Illustration of a Data Model
The data model is designed when the database is created. Units of data are
then inserted according to the plan that the model lays out. Some books use
the term schema instead of data model.

Figure 1-1
The Advantage of Using a Data Model

1015 06/27/94 1 case baseball gloves $450.00

1014 06/25/94 1 case football $960.00

1013 06/22/94 1 each tennis racquet $19.80

1012 06/18/94 1 case volleyball $ 840.00

1011 06/18/94 5 each tennis racquet $99.00

1010 06/17/94 1 case tennis ball $36.00

ORDERS

order
1011

06/18/94

order
1003

05/22/94

order
1001

05/20/94

customer
Anthony
Higgins

item
2

volleyball
nets

item
1 case
tennis

ball

order
1013

06/22/94

item
tennis

racquet

$19.80
Database Concepts 1-5

Storing Data
Storing Data
Another difference between a database and a file is that the organization of
the database is stored with the database.

A file can have a complex inner structure, but the definition of that structure
is not within the file; it is in the programs that create or use the file. For
example, a document file that a word-processing program stores might
contain very detailed structures describing the format of the document.
However, only the word-processing program can decipher the contents of the
file because the structure is defined within the program, not within the file.

A data model, however, is contained in the database it describes. It travels
with the database and is available to any program that uses the database. The
model defines not only the names of the data items but also their data types,
so a program can adapt itself to the database. For example, a program can
find out that, in the current database, a price item is a decimal number with
eight digits, two to the right of the decimal point; then it can allocate storage
for a number of that type. How programs work with databases is the subject
of Chapter 5, “Programming with SQL,” and Chapter 6, “Modifying Data
Through SQL Programs.”

Querying Data
Another difference between a database and a file is the way you can
interrogate them. You can search a file sequentially, looking for particular
values at particular physical locations in each line or record. That is, you
might ask “What records have the number 1013 in the first field?” Figure 1-2
shows this type of search.
1-6 Informix Guide to SQL: Tutorial

Querying Data
In contrast, when you query a database, you use the terms that its model
defines. You can query the database with questions such as, “What orders
have been placed for products made by the Shimara Corporation, by customers
in New Jersey, with ship dates in the third quarter?” Figure 1-3 shows this type
of query.

Figure 1-2
Searching a File

Sequentially1015 06/27/94 1 case baseball gloves$450.00

1014 06/25/94 1 case footballs 960.001013 06/22/94 1 each tennis racquet $19.80
06/22/94 1 case tennis ball $36.00
06/22/94 1 case tennis ball $48.00
06/23/941012 06/18/94 1 case volleyball $840.00

1011 06/18/94 5 each tennis racquet $99.00

1010 06/17/94 1 case tennis ball $36.00

ORDERS
Database Concepts 1-7

Querying Data
In other words, when you interrogate data that is stored in a file, you must
state your question in terms of the physical layout of the file. When you query
a database, you can ignore the arcane details of computer storage and state
your query in terms that reflect the real world, at least to the extent that the
data model reflects the real world.

In this manual, Chapter 2, “Composing Simple SELECT Statements,” and
Chapter 3, “Composing Advanced SELECT Statements,” discuss the
language you use to make queries.

For information about how to build and implement your data model, see the
Informix Guide to Database Design and Implementation.

Figure 1-3
Querying a Database

order
1016

06/29/94

order
1023

07/24/94

manufacturer
Shimara

Run: Next Restart Exit
Display the next page of query results

--------stores8-----------Press CTRL-W for Help------

1019 Bob Shorter SHM swim cap 07/16/94

order
1019

07/16/94

customer
Cathy

O’Brian

state
New Jersey

customer
Bob

Shorter
1-8 Informix Guide to SQL: Tutorial

Modifying Data
Modifying Data
The model also makes it possible to modify the contents of the database with
less chance for error. You can query the database with statements such as
“Find every stock item with a manufacturer of Presta or Schraeder, and increase
its price by 13 percent.” You state changes in terms that reflect the meaning of
the data. You do not have to waste time and effort thinking about details of
fields within records in a file, so the chances for error are less.

The statements you use to modify stored data are covered in Chapter 4,
“Modifying Data.”

Concurrent Use and Security
A database can be a common resource for many users. Multiple users can
query and modify a database simultaneously. The database server (the
program that manages the contents of all databases) ensures that the queries
and modifications are done in sequence and without conflict.

Having concurrent users on a database provides great advantages but also
introduces new problems of security and privacy. Some databases are
private; individuals set them up for their own use. Other databases contain
confidential material that must be shared but among only a select group of
persons; still other databases provide public access.

Controlling Database Use
Informix database software provides the means to control database use.
When you design a database, you can perform any of the following
functions:

■ Keep the database completely private

■ Open its entire contents to all users or to selected users

■ Restrict the selection of data that some users can view. (In fact, you
can reveal entirely different selections of data to different groups of
users.)
Database Concepts 1-9

Centralized Management
■ Allow specified users to view certain items but not modify them

■ Allow specified users to add new data but not modify old data

■ Allow specified users to modify all, or specified items of, existing
data

■ Ensure that added or modified data conforms to the data model

For information about how to grant and limit access to your database, see the
Informix Guide to Database Design and Implementation.

Centralized Management
Databases that are used by many people are highly valuable and must be
protected as important business assets. You create a significant problem
when you compile a store of valuable data and simultaneously allow many
employees to access it: protecting data while maintaining performance. The
database server lets you centralize these tasks.

Databases must be guarded against loss or damage. The hazards are many:
failures in software and hardware, and the risks of fire, flood, and other
natural disasters. Losing an important database creates a huge potential for
damage. The damage could include not only the expense and difficulty of
re-creating the lost data but also the loss of productive time by the database
users as well as the loss of business and good will while users cannot work.
A plan for regular backups helps avoid or mitigate these potential disasters.

A large database that many people use must be maintained and tuned.
Someone must monitor its use of system resources, chart its growth, antic-
ipate bottlenecks, and plan for expansion. Users will report problems in the
application programs; someone must diagnose these problems and correct
them. If rapid response is important, someone must analyze the performance
of the system and find the causes of slow responses.
1-10 Informix Guide to SQL: Tutorial

Important Database Terms
Important Database Terms
You should know two sets of terms before you begin the next chapter. One
set of terms describes the database and the data model; the other set describes
the computer programs that manage the database. This section defines the
terms that describe the database and the data model. For the terms that apply
to programs that manage a database, see “Database Software” on page 1-17.

The Relational Model
Informix databases are relational databases. In technical terms, that means
that the data model by which an Informix database is organized is based on
the relational calculus devised by E. F. Codd. In practical terms, it means that
all data is presented in the form of tables with rows and columns.

The relational model is a way of organizing data to reflect the world. It uses
the following simple corresponding relationship.

Some rules apply about how you choose entities and attributes, but they are
important only when you are designing a new database. (For complete infor-
mation about database design, see the Informix Guide to Database Design and
Implementation.) The data model in an existing database is already set. To use
the database, you need to know only the names of the tables and columns
and how they correspond to the real world.

Relationship Description

table = entity A table represents all that the database knows
about one subject or kind of thing.

column = attribute A column represents one feature, characteristic,
or fact that is true of the table subject.

row = instance A row represents one individual instance of the
table subject.
Database Concepts 1-11

Tables
Tables
A database is a collection of information that is grouped into one or more
tables. A table is an array of data items organized into rows and columns. A
demonstration database is distributed with every Informix product. A partial
table from the demonstration database follows.

A table represents all that the database administrator (DBA) knows about one
entity, one type of thing that the database describes. The example table, stock,
represents all that the DBA knows about the merchandise that is stocked by a
sporting-goods store. Other tables in the demonstration database represent
such entities as customer and orders.

Think of a database as a collection of tables. To create a database is to create
a set of tables. The right to query or modify tables can be controlled on a
table-by-table basis, so that some users can view or modify some tables but
not others.

stock_num manu_code description unit_price unit unit_descr

...

1 HRO baseball gloves 250.00 case 10 gloves/case

1 HSK baseball gloves 800.00 case 10 gloves/case

1 SMT baseball gloves 450.00 case 10 gloves/case

2 HRO baseball 126.00 case 24/case

3 HSK baseball bat 240.00 case 12/case

4 HSK football 960.00 case 24/case

4 HRO football 480.00 case 24/case

5 NRG tennis racquet 28.00 each each

...

313 ANZ swim cap 60.00 case 12/box
1-12 Informix Guide to SQL: Tutorial

Columns
Columns
Each column of a table stands for one attribute, which is one characteristic,
feature, or fact that is true of the subject of the table. The stock table has
columns for the following facts about items of merchandise: stock numbers,
manufacturer codes, descriptions, prices, and units of measure.

Rows
Each row of a table stands for one instance of the subject of the table, which is
one particular example of that entity. Each row of the stock table stands for
one item of merchandise that the sporting-goods store sells.

Operations on Tables
Because a database is really a collection of tables, database operations are
operations on tables. The relational model supports three fundamental
operations: selection, projection, and joining. Figure 1-4 shows the selection
and projection operations. (All three operations are defined in more detail,
with many examples, in Chapter 2, “Composing Simple SELECT State-
ments,” and Chapter 3, “Composing Advanced SELECT Statements.”)
Database Concepts 1-13

Operations on Tables
When you select data from a table, you are choosing certain rows and
ignoring others. For example, you can query the stock table by asking the
database management system to “select all rows in which the manufacturer
code is HSK and the unit price is between 200.00 and 300.00.”

When you project from a table, you are choosing certain columns and
ignoring others. For example, you can query the stock table by asking the
database management system to “project the stock_num, unit_descr, and
unit_price columns.”

A table contains information about only one entity; when you want
information about multiple entities, you must join their tables. You can join
tables in many ways. (The join operation is the subject of Chapter 3,
“Composing Advanced SELECT Statements.”)

Figure 1-4
Illustration of Selection and Projection

stock table

SELECT

P R O J E C T I O N

stock_num manu_code description unit_price unit unit_descr

...
1 HRO baseball gloves 250.00 case 10 gloves/case
1 HSK baseball gloves 800.00 case 10 gloves/case
1 SMT baseball gloves 450.00 case 10 gloves/case
2 HRO baseball 126.00 case 24/case
3 HSK baseball bat 240.00 case 12/case
4 HSK football 960.00 case 24/case
4 HRO football 480.00 case 24/case
5 NRG tennis racquet 28.00 each each
...
313 ANZ swim cap 60.00 case 12/box
1-14 Informix Guide to SQL: Tutorial

Structured Query Language
Structured Query Language
Most computer software has not yet reached a point where you can literally
ask a database, “What orders have been placed by customers in New Jersey
with ship dates in the third quarter?” You must still phrase questions in a
restricted syntax that the software can easily parse. You can pose the same
question to the demonstration database in the following terms:

SELECT * FROM customer, orders
WHERE customer.customer_num = orders.customer_num

AND customer.state = 'NJ'
AND orders.ship_date
BETWEEN DATE('7/1/96') AND DATE('9/30/96')

This question is a sample of Structured Query Language (SQL). It is the
language that you use to direct all operations on the database. SQL is
composed of statements, each of which begins with one or two keywords that
specify a function. The Informix implementation of SQL includes a large
number of SQL statements, from ALLOCATE DESCRIPTOR to WHENEVER.

All the SQL statements are specified in detail in the Informix Guide to SQL:
Syntax. Most of the statements are used infrequently, when you set up or tune
a database. People generally use three or four statements to query or update
databases.

One statement, SELECT, is in almost constant use. SELECT is the only
statement that you can use to retrieve data from the database. It is also the
most complicated statement, and the next two chapters of this book explore
its many uses.

Standard SQL
SQL and the relational model were invented and developed at IBM in the
early and middle 1970s. Once IBM proved that it was possible to implement
practical relational databases and that SQL was a usable language for manip-
ulating them, other vendors began to provide similar products for non-IBM
computers.
Database Concepts 1-15

Informix SQL and ANSI SQL
For reasons of performance or competitive advantage, or to take advantage
of local hardware or software features, each SQL implementation differed in
small ways from the others and from the IBM version of the language. To
ensure that the differences remained small, a standards committee was
formed in the early 1980s.

Committee X3H2, sponsored by the American National Standards Institute
(ANSI), issued the SQL1 standard in 1986. This standard defines a core set of
SQL features and the syntax of statements such as SELECT.

Informix SQL and ANSI SQL
The SQL version that Informix products support is compatible with standard
SQL (it is also compatible with the IBM version of the language). However, it
does contain extensions to the standard; that is, extra options or features for
certain statements, and looser rules for others. Most of the differences occur
in the statements that are not in everyday use. For example, few differences
occur in the SELECT statement, which accounts for 90 percent of the SQL use
for a typical person.

However, the extensions do exist and create a conflict. Thousands of Informix
customers have embedded Informix-style SQL in programs and stored proce-
dures. They rely on Informix to keep its language the same. Other customers
require the ability to use databases in a way that conforms exactly to the ANSI
standard. They rely on Informix to change its language to conform.

Informix resolves the conflict with the following compromise:

■ The Informix version of SQL, with its extensions to the standard, is
available by default.

■ You can ask any Informix SQL language processor to check your use
of SQL and post a warning flag whenever you use an Informix
extension.

Wherever a difference exists between Informix and ANSI SQL, the Informix
Guide to SQL: Syntax describes both versions. Because you probably intend to
use only one version, simply ignore the version you do not need.
1-16 Informix Guide to SQL: Tutorial

ANSI-Compliant Databases
ANSI-Compliant Databases
Use the MODE ANSI keywords when you create a database to designate it as
ANSI compliant. Within such a database, certain characteristics of the ANSI
standard apply. For example, all actions that modify data take place within a
transaction automatically, which means that the changes are made in their
entirety or not at all. Differences in the behavior of ANSI-compliant databases
are noted where appropriate in the statement descriptions in the Informix
Guide to SQL: Syntax. For a detailed discussion of ANSI-compliant databases,
see the Informix Guide to Database Design and Implementation.

GLS Databases
Informix database server products provide the Global Language Support
(GLS) feature. In addition to U.S. ASCII English, GLS allows you to work in
other locales and use non-ASCII characters in SQL data and identifiers. You
can use the GLS feature to conform to the customs of a specific locale. The
locale files contain culture-specific information such as various money and
date formats and collation orders. For complete GLS information, see the
Informix Guide to GLS Functionality.

Database Software
You access your database through two layers of sophisticated software. The
top layer, or application, sends commands or queries to the database server.
The application calls on the bottom layer, or database server, and gets back
information. You command both layers when you use SQL.

Every program that uses data from a database operates in the same way; you
use an application and database server in every case.The application
interacts with the user, prepares and formats data, and sets up SQL state-
ments. The database server manages the database and interprets the SQL
statements. All the applications make requests of the database server, and
only the database server manipulates the database files on disk.

GLS
Database Concepts 1-17

Applications
Applications
A database application, or simply application, is a program that uses the
database. It does so by communicating with the database server. At its
simplest, the application sends SQL statements to the database server, and the
database server sends rows of data back to the application. Then the appli-
cation displays the rows to you, its user.

Alternatively, you command the application to add new data to the database.
It incorporates the new data as part of an SQL statement to insert a row and
passes this statement to the database server for execution.

Several types of applications exist. Some allow you to access the database
interactively with SQL; others present the stored data in different forms
related to its use.

Database Server
The database server is the program that manages the contents of the database
as they are stored on disk. The database server knows how tables, rows, and
columns are actually organized in physical computer storage. The database
server also interprets and executes all SQL commands.

Interactive SQL
To carry out the examples in this book, and to experiment with SQL and
database design for yourself, you need a program that lets you execute SQL
statements interactively. DB-Access and the Relational Object Manager are
examples of such programs. They help you to compose SQL statements; then
they pass your SQL statements to the database server for execution and
display the results to you.

Dynamic Server with AD and XP Options does not support the Relational
Object Manager program. ♦

AD/XP
1-18 Informix Guide to SQL: Tutorial

General Programming
General Programming
You can write programs that incorporate SQL statements and exchange data
with the database server. That is, you can write a program to retrieve data
from the database and format it however you choose. You can also write
programs that take data from any source in any format, prepare it, and insert
it into the database.

You can also write programs called stored procedures to work with database
data and objects. The stored procedures that you write are stored directly in
a database in tables. You can then execute a stored procedure from
DB-Access, ROM, or an SQL application programming interface (SQL API)
such as INFORMIX-ESQL/C.

Chapter 5, “Programming with SQL,” and Chapter 6, “Modifying Data
Through SQL Programs,” present an overview of how SQL is used in
programs.

Summary
A database contains a collection of related information but differs in a
fundamental way from other methods of storing data. The database contains
not only the data but also a data model that defines each data item and
specifies its meaning with respect to the other items and to the real world.

More than one user can access and modify a database at the same time. Each
user has a different view of the contents of a database, and each user’s access
to those contents can be restricted in several ways.

A relational database consists of tables, and the tables consist of columns and
rows. The relational model supports three fundamental operations on tables:
selections, projections, and joins.
Database Concepts 1-19

Summary
To manipulate and query a database use SQL. IBM pioneered SQL and ANSI
standardized it. Informix added extensions to the ANSI-defined language
that you can use to your advantage. Informix tools also make it possible to
maintain strict compliance with ANSI standards.

Two layers of software mediate all your work with databases. The bottom
layer is always a database server that executes SQL statements and manages
the data on disk and in computer memory. The top layer is one of many appli-
cations, some from Informix and some written by you or written by other
vendors or your colleagues.
1-20 Informix Guide to SQL: Tutorial

2
Chapter
Composing Simple SELECT
Statements
Introducing the SELECT Statement 2-4
Some Basic Concepts 2-5

Privileges 2-5
Relational Operations 2-5
Selection and Projection 2-6
Joining . 2-8

The Forms of SELECT 2-10
Special Data Types. 2-11

Single-Table SELECT Statements 2-11
Selecting All Columns and Rows. 2-12

Using the Asterisk Symbol (*) 2-12
Reordering the Columns 2-13
Sorting the Rows 2-13

Selecting Specific Columns 2-18
ORDER BY and Non-English Data 2-25
Selecting Substrings 2-27

Using the WHERE Clause 2-28
Creating a Comparison Condition 2-29

Using Variable-Text Searches 2-37
Using Exact-Text Comparisons 2-38
Using a Single-Character Wildcard. 2-39
MATCHES and Non-English Data 2-42
Comparing for Special Characters 2-44

Using a FIRST Clause to Select Specific Rows 2-46
FIRST Clause Without an ORDER BY Clause 2-46
FIRST Clause with an ORDER BY Clause 2-47
FIRST Clause in a Union Query 2-48

Expressions and Derived Values 2-49
Arithmetic Expressions. 2-49
CASE Expressions 2-54
Sorting on Derived Columns 2-56

2-2 Infor
Using Functions in SELECT Statements 2-57
Aggregate Functions. 2-57
Time Functions 2-63
Date-Conversion Functions 2-68
String Manipulation Functions 2-71
Other Functions 2-79

Using Stored Procedures in SELECT Statements 2-86

Multiple-Table SELECT Statements 2-88
Creating a Cartesian Product 2-88
Creating a Join 2-90

Equi-Join . 2-90
Natural Join. 2-93
Multiple-Table Join 2-95

Some Query Shortcuts 2-96
Using Aliases 2-96
The INTO TEMP Clause 2-100

Selecting Tables from a Database Other Than the Current Database . . 2-101

Summary . 2-102
mix Guide to SQL: Tutorial

SELECT is the most important and the most complex SQL statement.
You can use it, along with the SQL statements INSERT, UPDATE, and DELETE,
to manipulate data. You can use the SELECT statement in the following ways:

■ By itself to retrieve data from a database

■ As part of an INSERT statement to produce new rows

■ As part of an UPDATE statement to update information

The SELECT statement is the primary way to query information in a database.
It is your key to retrieving data in a program, report, screen form, or
spreadsheet.

This chapter shows how you can use the SELECT statement to query on and
retrieve data in a variety of ways from a relational database. It discusses how
to tailor your statements to select columns or rows of information from one
or more tables, how to include expressions and functions in SELECT state-
ments, and how to create various join conditions between relational database
tables.

This chapter introduces the basic methods for retrieving data from a
relational database. More complex uses of SELECT statements, such as
subqueries, outer joins, and unions, are discussed in Chapter 3, “Composing
Advanced SELECT Statements.” The syntax and usage for the SELECT
statement are described in detail in the Informix Guide to SQL: Syntax.

Most examples in this chapter come from the tables in the demonstration
database, which is installed with the software for your Informix SQL API or
database utility. In the interest of brevity, the examples show only part of the
data that is retrieved for each SELECT statement. For information on the
structure and contents of the demonstration database, see the Informix Guide
to SQL: Reference. For emphasis, keywords are shown in uppercase letters in
the examples, although SQL is not case sensitive.
Composing Simple SELECT Statements 2-3

Introducing the SELECT Statement
Introducing the SELECT Statement
The SELECT statement is constructed of clauses that let you look at data in a
relational database. These clauses let you select columns and rows from one
or more database tables or views, specify one or more conditions, order and
summarize the data, and put the selected data in a temporary table.

This chapter shows how to use five SELECT statement clauses. You must
include these clauses in a SELECT statement in the following order:

1. SELECT clause

2. FROM clause

3. WHERE clause

4. ORDER BY clause

5. INTO TEMP clause

Only the SELECT and FROM clauses are required. These two clauses form the
basis for every database query because they specify the tables and columns
to be retrieved. Use one or more of the other clauses from the following list:

■ Add a WHERE clause to select specific rows or create a join condition.

■ Add an ORDER BY clause to change the order in which data is
produced.

■ Add an INTO TEMP clause to save the results as a table for further
queries.

Two additional SELECT statement clauses, GROUP BY and HAVING, let you
perform more complex data retrieval. They are introduced in Chapter 3,
“Composing Advanced SELECT Statements.” Another clause, INTO,
specifies the program or host variable to receive data from a SELECT
statement in INFORMIX-NewEra and SQL APIs. Complete syntax and rules for
using the SELECT statement are shown in the Informix Guide to SQL: Syntax.
2-4 Informix Guide to SQL: Tutorial

Some Basic Concepts
Some Basic Concepts
The SELECT statement, unlike INSERT, UPDATE, and DELETE statements, does
not modify the data in a database. It simply queries the data. Whereas only
one user at a time can modify data, multiple users can query or select the data
concurrently. The statements that modify data appear in Chapter 4,
“Modifying Data.” The syntax descriptions of the INSERT, UPDATE, and
DELETE statements appear in the Informix Guide to SQL: Syntax.

In a relational database, a column is a data element that contains a particular
type of information that occurs in every row in the table. A row is a group of
related items of information about a single entity across all columns in a
database table.

You can select columns and rows from a database table; from a system-catalog
table, a special table that contains information on the database; or from a view,
a virtual table created to contain a customized set of data. System catalog
tables are described in the Informix Guide to SQL: Reference. Views are
discussed in the Informix Guide to Database Design and Implementation.

Privileges

Before you make a query against data, make sure you have the Connect
privilege on the database and the Select privilege on the table. These privi-
leges are normally granted to all users. Database access privileges are
discussed in the Informix Guide to Database Design and Implementation and in
the GRANT and REVOKE statements in the Informix Guide to SQL: Syntax.

Relational Operations

A relational operation involves manipulating one or more tables, or relations, to
result in another table. The three kinds of relational operations are selection,
projection, and join. This chapter includes examples of selection, projection,
and simple joining.
Composing Simple SELECT Statements 2-5

Some Basic Concepts
Selection and Projection

In relational terminology, selection is defined as taking the horizontal subset of
rows of a single table that satisfies a particular condition. This kind of SELECT
statement returns some of the rows and all of the columns in a table. Selection
is implemented through the WHERE clause of a SELECT statement, as Query
2-1 shows.

Query 2-1
SELECT * FROM customer

WHERE state = 'NJ'

Query Result 2-1 contains the same number of columns as the customer table,
but only a subset of its rows. Because the data in the selected columns does
not fit on one line of the DB-Access or the Relational Object Manager screen,
the data is displayed vertically instead of horizontally.

In relational terminology, projection is defined as taking a vertical subset from
the columns of a single table that retains the unique rows. This kind of
SELECT statement returns some of the columns and all of the rows in a table.

Query Result 2-1
customer_num 119
fname Bob
lname Shorter
company The Triathletes Club
address1 2405 Kings Highway
address2
city Cherry Hill
state NJ
zipcode 08002
phone 609-663-6079

customer_num 122
fname Cathy
lname O‘Brian
company The Sporting Life
address1 543d Nassau
address2
city Princeton
state NJ
zipcode 08540
phone 609-342-0054
2-6 Informix Guide to SQL: Tutorial

Some Basic Concepts
Projection is implemented through the select list in the SELECT clause of a
SELECT statement, as Query 2-2 shows.

Query 2-2
SELECT UNIQUE city, state, zipcode

FROM customer

Query Result 2-2 contains the same number of rows as the customer table,
but it projects only a subset of the columns in the table.

Query Result 2-2

city state zipcode

Bartlesville OK 74006
Blue Island NY 60406
Brighton MA 02135
Cherry Hill NJ 08002
Denver CO 80219
Jacksonville FL 32256
Los Altos CA 94022
Menlo Park CA 94025
Mountain View CA 94040
Mountain View CA 94063
Oakland CA 94609
Palo Alto CA 94303
Palo Alto CA 94304
Phoenix AZ 85008
Phoenix AZ 85016
Princeton NJ 08540
Redwood City CA 94026
Redwood City CA 94062
Redwood City CA 94063
San Francisco CA 94117
Sunnyvale CA 94085
Sunnyvale CA 94086
Wilmington DE 19898
Composing Simple SELECT Statements 2-7

Some Basic Concepts
The most common kind of SELECT statement uses both selection and
projection. A query of this kind, shown in Query 2-3, returns some of the
rows and some of the columns in a table.

Query 2-3
SELECT UNIQUE city, state, zipcode

FROM customer
WHERE state = 'NJ'

Query Result 2-3 contains a subset of the rows and a subset of the columns in
the customer table.

Joining

A join occurs when two or more tables are connected by one or more columns
in common, creating a new table of results. The query in the example uses a
subset of the items and stock tables to illustrate the concept of a join, as
Figure 2-1 shows.

Query Result 2-3
city state zipcode

Cherry Hill NJ 08002
Princeton NJ 08540
2-8 Informix Guide to SQL: Tutorial

Some Basic Concepts
Query 2-4 joins the customer and state tables.

Query 2-4
SELECT UNIQUE city, state, zipcode, sname

FROM customer, state
WHERE customer.state = state.code

Figure 2-1
A Join Between Two Tables

SELECT unique item_num, order_num, stock.stock_num, description
FROM items, stock
WHERE items.stock_num = stock.stock_num

item_num order_num stock_num

1 1001 1
1 1002 4
2 1002 3
3 1003 5
1 1005 5

items table (example)

stock_num manu_code description

1 HRO baseball gloves
1 HSK baseball gloves
2 HRO baseball
4 HSK football
5 NRG tennis racquet

stock table (example)

item_num order_num stock_num description

1 1001 1 baseball gloves
1 1002 4 football
3 1003 5 tennis racquet
1 1005 5 tennis racquet
Composing Simple SELECT Statements 2-9

The Forms of SELECT
Query Result 2-4 consists of specified rows and columns from both the
customer and state tables.

The Forms of SELECT
Although the syntax remains the same across all Informix products, the form
of a SELECT statement and the location and formatting of the resulting output
depends on the application. The examples in this chapter and in Chapter 3,
“Composing Advanced SELECT Statements,” display the SELECT statements
and their output as they appear when you use the interactive Query-
language option in DB-Access or the Relational Object Manager. You also can
embed SELECT statements in a language such as INFORMIX-ESQL/C (where
they are treated as executable code).

Query Result 2-4
city state zipcode sname

Bartlesville OK 74006 Oklahoma
Blue Island NY 60406 New York
Brighton MA 02135 Massachusetts
Cherry Hill NJ 08002 New Jersey
Denver CO 80219 Colorado
Jacksonville FL 32256 Florida
Los Altos CA 94022 California
Menlo Park CA 94025 California
Mountain View CA 94040 California
Mountain View CA 94063 California
Oakland CA 94609 California
Palo Alto CA 94303 California
Palo Alto CA 94304 California
Phoenix AZ 85008 Arizona
Phoenix AZ 85016 Arizona
Princeton NJ 08540 New Jersey
Redwood City CA 94026 California
Redwood City CA 94062 California
Redwood City CA 94063 California
San Francisco CA 94117 California
Sunnyvale CA 94085 California
Sunnyvale CA 94086 California
Wilmington DE 19898 Delaware
2-10 Informix Guide to SQL: Tutorial

Special Data Types
Special Data Types
With DB-Access, when you issue a SELECT statement that includes a
VARCHAR, TEXT, or BYTE data type, the results of the query are displayed
differently.

■ If you execute a query on a VARCHAR column, the entire VARCHAR
value is displayed, just as CHARACTER values are displayed.

■ If you select a TEXT column, the contents of the TEXT column are
displayed, and you can scroll through them.

■ If you query on a BYTE column, the words <BYTE value> are
displayed instead of the actual value.

Differences specific to VARCHAR, TEXT, and BYTE are noted as appropriate
throughout this chapter.

You can issue a SELECT statement that queries NCHAR columns instead of
CHAR columns or NVARCHAR columns instead of VARCHAR columns.

For complete GLS information, see the Informix Guide to GLS Functionality. For
additional information on GLS and other data types, see the Informix Guide to
Database Design and Implementation and the Informix Guide to SQL: Reference. ♦

Single-Table SELECT Statements
You can query a single table in a database in many ways. You can tailor a
SELECT statement to perform the following actions:

■ Retrieve all or specific columns

■ Retrieve all or specific rows

■ Perform computations or other functions on the retrieved data

■ Order the data in various ways

GLS
Composing Simple SELECT Statements 2-11

Selecting All Columns and Rows
Selecting All Columns and Rows
The most basic SELECT statement contains only the two required clauses,
SELECT and FROM.

Using the Asterisk Symbol (*)

Query 2-5a specifies all the columns in the manufact table in a select list. A
select list is a list of the column names or expressions that you want to project
from a table.

Query 2-5a
SELECT manu_code, manu_name, lead_time

FROM manufact

Query 2-5b uses the wildcard asterisk symbol (*), which is shorthand for the
select list. The * represents the names of all the columns in the table. You can
use the asterisk symbol (*) when you want all the columns, in their defined
order.

Query 2-5b
SELECT * FROM manufact

Query 2-5a and Query 2-5b are equivalent and display the same results; that
is, a list of every column and row in the manufact table. Query Result 2-5
shows the results as they would appear on a DB-Access or Relational Object
Manager screen.

Query Result 2-5
manu_code manu_name lead_time

 SMT Smith 3
 ANZ Anza 5
 NRG Norge 7
 HSK Husky 5
 HRO Hero 4
 SHM Shimara 30
 KAR Karsten 21
 NKL Nikolus 8
 PRC ProCycle 9
2-12 Informix Guide to SQL: Tutorial

Selecting All Columns and Rows
Reordering the Columns

Query 2-6 shows how you can change the order in which the columns are
listed by changing their order in your select list.

Query 2-6
SELECT manu_name, manu_code, lead_time

FROM manufact

Query Result 2-6 includes the same columns as the previous query result, but
because the columns are specified in a different order, the display is also
different.

Sorting the Rows

You can add an ORDER BY clause to your SELECT statement to direct the
system to sort the data in a specific order.You must include the columns that
you want to use in the ORDER BY clause in the select list either explicitly or
implicitly.

An explicit select list, shown in Query 2-7a, includes all the column names
that you want to retrieve.

Query 2-7a
SELECT manu_code, manu_name, lead_time

FROM manufact
ORDER BY lead_time

An implicit select list uses the asterisk symbol (*), as Query 2-7b shows.

Query 2-7b
SELECT * FROM manufact

ORDER BY lead_time

Query Result 2-6
manu_name manu_code lead_time

 Smith SMT 3
 Anza ANZ 5
 Norge NRG 7
 Husky HSK 5
 Hero HRO 4
 Shimara SHM 30
 Karsten KAR 21
 Nikolus NKL 8
 ProCycle PRC 9
Composing Simple SELECT Statements 2-13

Selecting All Columns and Rows
Query 2-7a and Query 2-7b produce the same display. Query Result 2-7
shows a list of every column and row in the manufact table, in order of
lead_time.

Ascending Order

The retrieved data is sorted and displayed, by default, in ascending order.
Ascending order is uppercase A to lowercase z for character data types, and
lowest to highest value for numeric data types. DATE and DATETIME data is
sorted from earliest to latest, and INTERVAL data is ordered from shortest to
longest span of time.

Descending Order

Descending order is the opposite of ascending order, from lowercase z to
uppercase A for character types and highest to lowest for numeric data types.
DATE and DATETIME data is sorted from latest to earliest, and INTERVAL data
is ordered from longest to shortest span of time. Query 2-8 shows an example
of descending order.

Query 2-8
SELECT * FROM manufact

ORDER BY lead_time DESC

The keyword DESC following a column name causes the retrieved data to be
sorted in descending order, as Query Result 2-8 shows.

Query Result 2-7
manu_code manu_name lead_time

 SMT Smith 3
 HRO Hero 4
 HSK Husky 5
 ANZ Anza 5
 NRG Norge 7
 NKL Nikolus 8
 PRC ProCycle 9
 KAR Karsten 21
 SHM Shimara 30
2-14 Informix Guide to SQL: Tutorial

Selecting All Columns and Rows
You can specify any column (except TEXT or BYTE) in the ORDER BY clause,
and the database server sorts the data based on the values in that column.

Sorting on Multiple Columns

You can also ORDER BY two or more columns, creating a nested sort. The
default is still ascending, and the column that is listed first in the ORDER BY
clause takes precedence.

Query Result 2-8
manu_code manu_name lead_time

 SHM Shimara 30
 KAR Karsten 21
 PRC ProCycle 9
 NKL Nikolus 8
 NRG Norge 7
 HSK Husky 5
 ANZ Anza 5
 HRO Hero 4
 SMT Smith 3
Composing Simple SELECT Statements 2-15

Selecting All Columns and Rows
Query 2-9 and Query 2-10 and corresponding query results show nested
sorts. To modify the order in which selected data is displayed, change the
order of the two columns that are named in the ORDER BY clause.

Query 2-9
SELECT * FROM stock

ORDER BY manu_code, unit_price

In Query Result 2-9, the manu_code column data appears in alphabetical
order and, within each set of rows with the same manu_code (for example,
ANZ, HRO), the unit_price is listed in ascending order.

Query Result 2-9
stock_num manu_code description unit_price unit unit_descr

5 ANZ tennis racquet $19.80 each each
9 ANZ volleyball net $20.00 each each
6 ANZ tennis ball $48.00 case 24 cans/case

313 ANZ swim cap $60.00 box 12/box
201 ANZ golf shoes $75.00 each each
310 ANZ kick board $84.00 case 12/case
301 ANZ running shoes $95.00 each each
304 ANZ watch $170.00 box 10/box
110 ANZ helmet $244.00 case 4/case
205 ANZ 3 golf balls $312.00 case 24/case
8 ANZ volleyball $840.00 case 24/case

302 HRO ice pack $4.50 each each
309 HRO ear drops $40.00 case 20/case
.
.
.
113 SHM 18-spd, assmbld $685.90 each each
5 SMT tennis racquet $25.00 each each
6 SMT tennis ball $36.00 case 24 cans/case
1 SMT baseball gloves $450.00 case 10 gloves/case
2-16 Informix Guide to SQL: Tutorial

Selecting All Columns and Rows
Query 2-10 shows the reversed order of the columns in the ORDER BY clause.

Query 2-10
SELECT * FROM stock

ORDER BY unit_price, manu_code

In Query Result 2-10, the data appears in ascending order of unit_price and,
where two or more rows have the same unit_price (for example, $20.00,
$48.00, $312.00), the manu_code is in alphabetical order.

Query Result 2-10
stock_num manu_code description unit_price unit unit_descr

302 HRO ice pack $4.50 each each
302 KAR ice pack $5.00 each each
5 ANZ tennis racquet $19.80 each each
9 ANZ volleyball net $20.00 each each

103 PRC frnt derailleur $20.00 each each
106 PRC bicycle stem $23.00 each each
5 SMT tennis racquet $25.00 each each

.

.

.
301 HRO running shoes $42.50 each each
204 KAR putter $45.00 each each
108 SHM crankset $45.00 each each
6 ANZ tennis ball $48.00 case 24 cans/case

305 HRO first-aid kit $48.00 case 4/case
303 PRC socks $48.00 box 24 pairs/box
311 SHM water gloves $48.00 box 4 pairs/box
.
.
.
110 HSK helmet $308.00 case 4/case
205 ANZ 3 golf balls $312.00 case 24/case
205 HRO 3 golf balls $312.00 case 24/case
205 NKL 3 golf balls $312.00 case 24/case
1 SMT baseball gloves $450.00 case 10 gloves/case
4 HRO football $480.00 case 24/case

102 PRC bicycle brakes $480.00 case 4 sets/case
111 SHM 10-spd, assmbld $499.99 each each
112 SHM 12-spd, assmbld $549.00 each each
7 HRO basketball $600.00 case 24/case

203 NKL irons/wedge $670.00 case 2 sets/case
113 SHM 18-spd, assmbld $685.90 each each
1 HSK baseball gloves $800.00 case 10 gloves/case
8 ANZ volleyball $840.00 case 24/case
4 HSK football $960.00 case 24/case
Composing Simple SELECT Statements 2-17

Selecting Specific Columns
The order of the columns in the ORDER BY clause is important, and so is the
position of the DESC keyword. Although the statements in Query 2-11
contain the same components in the ORDER BY clause, each produces a
different result (not shown).

Query 2-11
SELECT * FROM stock

ORDER BY manu_code, unit_price DESC

SELECT * FROM stock
ORDER BY unit_price, manu_code DESC

SELECT * FROM stock
ORDER BY manu_code DESC, unit_price

SELECT * FROM stock
ORDER BY unit_price DESC, manu_code

Selecting Specific Columns
The previous section showed how to select and order all data from a table.
However, often all you want to see is the data in one or more specific
columns. Again, the formula is to use the SELECT and FROM clauses, specify
the columns and table, and perhaps order the data in ascending or
descending order with an ORDER BY clause.
2-18 Informix Guide to SQL: Tutorial

Selecting Specific Columns
If you want to find all the customer numbers in the orders table, use a
statement such as the one in Query 2-12.

Query 2-12
SELECT customer_num FROM orders

Query Result 2-12 shows how the statement simply selects all data in the
customer_num column in the orders table and lists the customer numbers on
all the orders, including duplicates.

The output includes several duplicates because some customers have placed
more than one order. Sometimes you want to see duplicate rows in a
projection. At other times, you want to see only the distinct values, not how
often each value appears.

Query Result 2-12
customer_num

104
101
104
106
116
112
117
110
111
115
104
117
104
106
110
119
120
121
122
123
124
126
127
Composing Simple SELECT Statements 2-19

Selecting Specific Columns
To suppress duplicate rows, include the keyword DISTINCT or its synonym
UNIQUE at the start of the select list, as Query 2-13 shows.

Query 2-13
SELECT DISTINCT customer_num FROM orders

SELECT UNIQUE customer_num FROM orders

To produce a more readable list, Query 2-13 limits the display to show each
customer number in the orders table only once, as Query Result 2-13 shows.

Query Result 2-13
customer_num

101
104
106
110
111
112
115
116
117
119
120
121
122
123
124
126
127
2-20 Informix Guide to SQL: Tutorial

Selecting Specific Columns
Suppose you are handling a customer call, and you want to locate purchase
order number DM354331. To list all the purchase order numbers in the orders
table, use a statement such as the one that Query 2-14 shows.

Query 2-14
SELECT po_num FROM orders

Query Result 2-14 shows how the statement retrieves data in the po_num
column in the orders table.

Query Result 2-14
po_num

 B77836
 9270
 B77890
 8006
 2865
 Q13557
 278693
 LZ230
 4745
 429Q
 B77897
 278701
 B77930
 8052
 MA003
 PC6782
 DM354331
 S22942
 Z55709
 W2286
 C3288
 W9925
 KF2961
Composing Simple SELECT Statements 2-21

Selecting Specific Columns
However, the list is not in a very useful order. You can add an ORDER BY
clause to sort the column data in ascending order and make it easier to find
that particular po_num, as Query Result 2-15 shows.

Query 2-15
SELECT po_num FROM orders

ORDER BY po_num

Query Result 2-15
po_num

 278693
 278701
 2865
 429Q
 4745
 8006
 8052
 9270
 B77836
 B77890
 B77897
 B77930
 C3288
 DM354331
 KF2961
 LZ230
 MA003
 PC6782
 Q13557
 S22942
 W2286
 W9925
 Z55709
2-22 Informix Guide to SQL: Tutorial

Selecting Specific Columns
To select multiple columns from a table, list them in the select list in the
SELECT clause. Query 2-16 shows that the order in which the columns are
selected is the order in which they are produced, from left to right.

Query 2-16
SELECT paid_date, ship_date, order_date,

customer_num, order_num, po_num
FROM orders
ORDER BY paid_date, order_date, customer_num

As shown in “Sorting on Multiple Columns” on page 2-15, you can use the
ORDER BY clause to sort the data in ascending or descending order and
perform nested sorts. Query Result 2-16 shows ascending order.

Query Result 2-16
paid_date ship_date order_date customer_num order_num po_num

05/30/1998 05/22/1998 106 1004 8006
05/30/1998 112 1006 Q13557

06/05/1998 05/31/1998 117 1007 278693
06/29/1998 06/18/1998 117 1012 278701
07/12/1998 06/29/1998 119 1016 PC6782
07/13/1998 07/09/1998 120 1017 DM354331

06/03/1998 05/26/1998 05/21/1998 101 1002 9270
06/14/1998 05/23/1998 05/22/1998 104 1003 B77890
06/21/1998 06/09/1998 05/24/1998 116 1005 2865
07/10/1998 07/03/1998 06/25/1998 106 1014 8052
07/21/1998 07/06/1998 06/07/1998 110 1008 LZ230
07/22/1998 06/01/1998 05/20/1998 104 1001 B77836
07/31/1998 07/10/1998 06/22/1998 104 1013 B77930
08/06/1998 07/13/1998 07/10/1998 121 1018 S22942
08/06/1998 07/16/1998 07/11/1998 122 1019 Z55709
08/21/1998 06/21/1998 06/14/1998 111 1009 4745
08/22/1998 06/29/1998 06/17/1998 115 1010 429Q
08/22/1998 07/25/1998 07/23/1998 124 1021 C3288
08/22/1998 07/30/1998 07/24/1998 127 1023 KF2961
08/29/1998 07/03/1998 06/18/1998 104 1011 B77897
08/31/1998 07/16/1998 06/27/1998 110 1015 MA003
09/02/1998 07/30/1998 07/24/1998 126 1022 W9925
09/20/1998 07/16/1998 07/11/1998 123 1020 W2286
Composing Simple SELECT Statements 2-23

Selecting Specific Columns
When you use SELECT and ORDER BY on several columns in a table, you
might find it helpful to use integers to refer to the position of the columns in
the ORDER BY clause.The statements in Query 2-17 retrieve and display the
same data, as Query Result 2-17 shows.

Query 2-17
SELECT customer_num, order_num, po_num, order_date

FROM orders
ORDER BY 4, 1

SELECT customer_num, order_num, po_num, order_date
FROM orders
ORDER BY order_date, customer_num

Query Result 2-17
customer_num order_num po_num order_date

104 1001 B77836 05/20/1998
101 1002 9270 05/21/1998
104 1003 B77890 05/22/1998
106 1004 8006 05/22/1998
116 1005 2865 05/24/1998
112 1006 Q13557 05/30/1998
117 1007 278693 05/31/1998
110 1008 LZ230 06/07/1998
111 1009 4745 06/14/1998
115 1010 429Q 06/17/1998
104 1011 B77897 06/18/1998
117 1012 278701 06/18/1998
104 1013 B77930 06/22/1998
106 1014 8052 06/25/1998
110 1015 MA003 06/27/1998
119 1016 PC6782 06/29/1998
120 1017 DM354331 07/09/1998
121 1018 S22942 07/10/1998
122 1019 Z55709 07/11/1998
123 1020 W2286 07/11/1998
124 1021 C3288 07/23/1998
126 1022 W9925 07/24/1998
127 1023 KF2961 07/24/1998
2-24 Informix Guide to SQL: Tutorial

Selecting Specific Columns
You can include the DESC keyword in the ORDER BY clause when you assign
integers to column names, as Query 2-18 shows.

Query 2-18
SELECT customer_num, order_num, po_num, order_date

FROM orders
ORDER BY 4 DESC, 1

In this case, data is first sorted in descending order by order_date and in
ascending order by customer_num.

ORDER BY and Non-English Data

By default, Informix database servers use the U.S. English language
environment, called a locale, for database data. The U.S. English locale
specifies data sorted in code-set order. This default locale uses the ISO 8859-1
code set.

If your database contains non-English data, the ORDER BY clause should
return data in the order appropriate to that language. Query 2-19 uses a
SELECT statement with an ORDER BY clause to search the table, abonnés, and
to order the selected information by the data in the nom column.

Query 2-19
SELECT numéro,nom,prénom

FROM abonnés
ORDER BY nom;

The collation order for the results of this query can vary, depending on the
following system variations:

■ Whether the nom column is CHAR or NCHAR data type. The
database server sorts data in CHAR columns by the order the
characters appear in the code set. The database server sorts data in
NCHAR columns by the order the characters are listed in the collation
portion of the locale. Store non-English data in NCHAR (or
NVARCHAR) columns to obtain results sorted by the language.

■ Whether the database server is using the correct non-English locale
when it accesses the database. To use a non-English locale, you must
set the CLIENT_LOCALE and DB_LOCALE environment variables to
the appropriate locale name.

GLS
Composing Simple SELECT Statements 2-25

Selecting Specific Columns
For Query 2-19 to return expected results, the nom column should be NCHAR
data type in a database that uses a French locale. Other operations, such as
less than, greater than, or equal to, are also affected by the user-specified
locale. For more information on non-English data and locales, see the
Informix Guide to GLS Functionality.

Query Result 2-19a and Query Result 2-19b show two sample sets of output.

Query Result 2-19a follows the ISO 8859-1 code-set order, which ranks
uppercase letters before lowercase letters and moves the names that start
with an accented character (Ålesund, Étaix, Ötker, and Øverst) to the end of
the list.

Query Result 2-19a
numéro nom prénom

13612 Azevedo Edouardo Freire
13606 Dupré Michèle Françoise
13607 Hammer Gerhard
13602 Hämmer le Greta
13604 LaForêt Jean-Noël
13610 LeMaître Héloïse
13613 Llanero Gloria Dolores
13603 Montaña José Antonio
13611 Oatfield Emily
13609 Tiramisù Paolo Alfredo
13600 da Sousa João Lourenço Antunes
13615 di GirolamoGiuseppe
13601 Ålesund Sverre
13608 Étaix Émile
13605 Ötker Hans-Jürgen
13614 Øverst Per-Anders

Query Result 2-19b
numéro nom prénom

13601 Ålesund Sverre
13612 Azevedo Edouardo Freire
13600 da Sousa João Lourenço Antunes
13615 di Girolamo Giuseppe
13606 Dupré Michèle Françoise
13608 Étaix Émile
13607 Hammer Gerhard
13602 Hämmer le Greta
13604 LaForêt Jean-Noël
13610 LeMaître Héloïse
13613 Llanero Gloria Dolores
13603 Montaña José Antonio
13611 Oatfield Emily
13605 Ötker Hans-Jürgen
13614 Øverst Per-Anders
13609 Tiramisù Paolo Alfredo
2-26 Informix Guide to SQL: Tutorial

Selecting Specific Columns
Query Result 2-19b shows that when the appropriate locale file is referenced
by the data server, names starting with non-English characters (Ålesund,
Étaix, Ötker, and Øverst) are collated differently than they are in the ISO
8859-1 code set. They are sorted correctly for the locale. It does not distin-
guish between uppercase and lowercase letters.

Selecting Substrings

To select part of the value of a character column, include a substring in the
select list. Suppose your marketing department is planning a mailing to your
customers and wants a rough idea of their geographical distribution based
on zip codes. You could write a query similar to the one Query 2-20 shows.

Query 2-20
SELECT zipcode[1,3], customer_num

FROM customer
ORDER BY zipcode
Composing Simple SELECT Statements 2-27

Using the WHERE Clause
Query 2-20 uses a substring to select the first three characters of the zipcode
column (which identify the state) and the full customer_num, and lists them
in ascending order by zip code, as Query Result 2-20 shows.

Using the WHERE Clause
Add a WHERE clause to a SELECT statement if you want to see only those
orders that a particular customer placed or the calls that a particular
customer service representative entered.

You can use the WHERE clause to set up a comparison condition or a join
condition. This section demonstrates only the first use. Join conditions are
described in a later section and in the next chapter.

The set of rows returned by a SELECT statement is its active set. A singleton
SELECT statement returns a single row. Use a cursor to retrieve multiple rows
in an SQL API. See Chapter 5, “Programming with SQL,” and Chapter 6,
“Modifying Data Through SQL Programs.”

Query Result 2-20
zipcode customer_num

021 125
080 119
085 122
198 121
322 123
604 127
740 124
802 126
850 128
850 120
940 105
940 112
940 113
940 115
940 104
940 116
940 110
940 114
940 106
940 108
940 117
940 111
940 101
940 109
941 102
943 103
943 107
946 118
2-28 Informix Guide to SQL: Tutorial

Creating a Comparison Condition
Creating a Comparison Condition
The WHERE clause of a SELECT statement specifies the rows that you want to
see. A comparison condition employs specific keywords and operators to
define the search criteria.

For example, you might use one of the keywords BETWEEN, IN, LIKE, or
MATCHES to test for equality, or the keywords IS NULL to test for null values.
You can combine the keyword NOT with any of these keywords to specify the
opposite condition.

The following table lists the relational operators that you can use in a WHERE
clause in place of a keyword to test for equality.

For CHAR expressions, greater than means after in ASCII collating order, where
lowercase letters are after uppercase letters, and both are after numerals. See
the ASCII Character Set chart in the Informix Guide to SQL: Syntax. For DATE
and DATETIME expressions, greater than means later in time, and for INTERVAL
expressions, it means of longer duration.

Important: You cannot use TEXT or BYTE columns in string expressions, except
when you test for null values.

Operator Operation

 = equals

!= or <> does not equal

 > greater than

 >= greater than or equal to

 < less than

 <= less than or equal to
Composing Simple SELECT Statements 2-29

Creating a Comparison Condition
You can use the preceding keywords and operators in a WHERE clause to
create comparison-condition queries that perform the following actions:

■ Include values

■ Exclude values

■ Find a range of values

■ Find a subset of values

■ Identify null values

To perform variable text searches using the criteria listed below, use the
preceding keywords and operators in a WHERE clause to create comparison-
condition queries:

■ Exact-text comparison

■ Single-character wildcards

■ Restricted single-character wildcards

■ Variable-length wildcards

■ Subscripting

The following section contains examples that illustrate these types of queries.

Including Rows

Use the equal sign (=) relational operator to include rows in a WHERE clause,
as Query 2-21 shows.

Query 2-21
SELECT customer_num, call_code, call_dtime, res_dtime

FROM cust_calls
WHERE user_id = 'maryj'

Query 2-21 returns the set of rows that Query Result 2-21 shows.

Query Result 2-21
customer_num call_code call_dtime res_dtime

106 D 1998-06-12 08:20 1998-06-12 08:25
121 O 1998-07-10 14:05 1998-07-10 14:06
127 I 1998-07-31 14:30
2-30 Informix Guide to SQL: Tutorial

Creating a Comparison Condition
Excluding Rows

Use the relational operators != or <> to exclude rows in a WHERE clause.

Query 2-22 assumes that you are selecting from an ANSI-compliant database;
the statements specify the owner or login name of the creator of the customer
table. This qualifier is not required when the creator of the table is the current
user, or when the database is not ANSI compliant. However, you can include
the qualifier in either case. For a complete discussion of owner naming, see
the Informix Guide to SQL: Syntax.

Query 2-22
SELECT customer_num, company, city, state

FROM odin.customer
WHERE state != 'CA'

SELECT customer_num, company, city, state
FROM odin.customer
WHERE state <> 'CA'

Both statements in Query 2-22 exclude values by specifying that, in the
customer table that the user odin owns, the value in the state column should
not be equal to CA, as Query Result 2-22 shows.

Query Result 2-22
customer_num company city state

119 The Triathletes Club Cherry Hill NJ
120 Century Pro Shop Phoenix AZ
121 City Sports Wilmington DE
122 The Sporting Life Princeton NJ
123 Bay Sports Jacksonville FL
124 Putnum’s Putters Bartlesville OK
125 Total Fitness Sports Brighton MA
126 Neelie’s Discount Sp Denver CO
127 Big Blue Bike Shop Blue Island NY
128 Phoenix College Phoenix AZ
Composing Simple SELECT Statements 2-31

Creating a Comparison Condition
Specifying A Range of Rows

Query 2-23 shows two ways to specify a range of rows in a WHERE clause.

Query 2-23
SELECT catalog_num, stock_num, manu_code, cat_advert

FROM catalog
WHERE catalog_num BETWEEN 10005 AND 10008

SELECT catalog_num, stock_num, manu_code, cat_advert
FROM catalog
WHERE catalog_num >= 10005 AND catalog_num <= 10008

Each statement in Query 2-23 specifies a range for catalog_num from 10005
through 10008, inclusive. The first statement uses keywords, and the second
uses relational operators to retrieve the rows as Query Result 2-23 shows.

Although the catalog table includes a column with the BYTE data type, that
column is not included in this SELECT statement because the output would
show only the words <BYTE value> by the column name. You can write an
SQL API application to display TEXT and BYTE values.

Query Result 2-23
catalog_num 10005
stock_num 3
manu_code HSK
cat_advert High-Technology Design Expands the Sweet Spot

catalog_num 10006
stock_num 3
manu_code SHM
cat_advert Durable Aluminum for High School and Collegiate Athle
tes

catalog_num 10007
stock_num 4
manu_code HSK
cat_advert Quality Pigskin with Joe Namath Signature

catalog_num 10008
stock_num 4
manu_code HRO
cat_advert Highest Quality Football for High School

and Collegiate Competitions
2-32 Informix Guide to SQL: Tutorial

Creating a Comparison Condition
Excluding a Range of Rows

Query 2-24 uses the keywords NOT BETWEEN to exclude rows that have the
character range 94000 through 94999 in the zipcode column, as Query Result
2-24 shows.

Query 2-24
SELECT fname, lname, company, city, state

FROM customer
WHERE zipcode NOT BETWEEN '94000' AND '94999'
ORDER BY state

Using a WHERE Clause to Find a Subset of Values

As shown in “Excluding Rows” on page 2-31, Query 2-25 also assumes the
use of an ANSI-compliant database. The owner qualifier is in quotation marks
to preserve the case sensitivity of the literal string.

Query 2-25
SELECT lname, city, state, phone

FROM 'Aleta'.customer
WHERE state = 'AZ' OR state = 'NJ'
ORDER BY lname

SELECT lname, city, state, phone
FROM 'Aleta'.customer
WHERE state IN ('AZ', 'NJ')
ORDER BY lname

Query Result 2-24
fname lname company city state

Fred Jewell Century* Pro Shop Phoenix AZ
Frank Lessor Phoenix University Phoenix AZ
Eileen Neelie Neelie’s Discount Sp Denver CO
Jason Wallack City Sports Wilmington DE
Marvin Hanlon Bay Sports Jacksonville FL
James Henry Total Fitness Sports Brighton MA
Bob Shorter The Triathletes Club Cherry Hill NJ
Cathy O’Brian The Sporting Life Princeton NJ
Kim Satifer Big Blue Bike Shop Blue Island NY
Chris Putnum Putnum’s Putters Bartlesville OK
Composing Simple SELECT Statements 2-33

Creating a Comparison Condition
Each statement in Query 2-25 retrieves rows that include the subset of AZ or
NJ in the state column of the Aleta.customer table, as Query Result 2-25
shows.

Important: You cannot test a TEXT or BYTE column with the IN keyword.

In Query 2-26, an example of a query on an ANSI-compliant database, no
quotation marks exist around the table owner name. Whereas the two state-
ments in Query 2-25 searched the Aleta.customer table, Query 2-26 searches
the table ALETA.customer, which is a different table, because of the way
ANSI-compliant databases look at owner names.

Query 2-26
SELECT lname, city, state, phone

FROM Aleta.customer
WHERE state NOT IN ('AZ', 'NJ')
ORDER BY state

Query Result 2-25
lname city state phone

 Jewell Phoenix AZ 602-265-8754
 Lessor Phoenix AZ 602-533-1817
 O’Brian Princeton NJ 609-342-0054
 Shorter Cherry Hill NJ 609-663-6079
2-34 Informix Guide to SQL: Tutorial

Creating a Comparison Condition
Query 2-26 adds the keywords NOT IN, so the subset changes to exclude the
subsets AZ and NJ in the state column. Query Result 2-26 shows the results in
order of the state column.

Identifying Null Values

Use the IS NULL or IS NOT NULL option to check for null values. A null value
represents either the absence of data or an unknown value. A null value is not
the same as a zero or a blank.

Query 2-27 returns all rows that have a null paid_date, as Query Result 2-27
shows.

Query 2-27
SELECT order_num, customer_num, po_num, ship_date

FROM orders
WHERE paid_date IS NULL
ORDER BY customer_num

Query Result 2-26
lname city state phone

Pauli Sunnyvale CA 408-789-8075
Sadler San Francisco CA 415-822-1289
Currie Palo Alto CA 415-328-4543
Higgins Redwood City CA 415-368-1100
Vector Los Altos CA 415-776-3249
Watson Mountain View CA 415-389-8789
Ream Palo Alto CA 415-356-9876
Quinn Redwood City CA 415-544-8729
Miller Sunnyvale CA 408-723-8789
Jaeger Redwood City CA 415-743-3611
Keyes Sunnyvale CA 408-277-7245
Lawson Los Altos CA 415-887-7235
Beatty Menlo Park CA 415-356-9982
Albertson Redwood City CA 415-886-6677
Grant Menlo Park CA 415-356-1123
Parmelee Mountain View CA 415-534-8822
Sipes Redwood City CA 415-245-4578
Baxter Oakland CA 415-655-0011
Neelie Denver CO 303-936-7731
Wallack Wilmington DE 302-366-7511
Hanlon Jacksonville FL 904-823-4239
Henry Brighton MA 617-232-4159
Satifer Blue Island NY 312-944-5691
Putnum Bartlesville OK 918-355-2074
Composing Simple SELECT Statements 2-35

Creating a Comparison Condition
Forming Compound Conditions

To connect two or more comparison conditions, or Boolean expressions, use
the logical operators AND, OR, and NOT. A Boolean expression evaluates as
true or false or, if null values are involved, as unknown. You can use TEXT
or BYTE objects in a Boolean expression only when you test for a null value.

In Query 2-28, the operator AND combines two comparison expressions in
the WHERE clause.

Query 2-28
SELECT order_num, customer_num, po_num, ship_date

FROM orders
WHERE paid_date IS NULL

AND ship_date IS NOT NULL
ORDER BY customer_num

The query returns all rows that have a null paid_date and the ones that do not
also have a null ship_date, as Query Result 2-28 shows.

Query Result 2-27
order_num customer_num po_num ship_date

1004 106 8006 05/30/1998
1006 112 Q13557
1007 117 278693 06/05/1998
1012 117 278701 06/29/1998
1016 119 PC6782 07/12/1998
1017 120 DM354331 07/13/1998

Query Result 2-28
order_num customer_num po_num ship_date

1004 106 8006 05/30/1998
1007 117 278693 06/05/1998
1012 117 278701 06/29/1998
1016 119 PC6782 07/12/1998
1017 120 DM354331 07/13/1998
2-36 Informix Guide to SQL: Tutorial

Creating a Comparison Condition
Using Variable-Text Searches

You can use the keywords LIKE and MATCHES for variable-text queries that
are based on substring searches of fields. Include the keyword NOT to
indicate the opposite condition. The keyword LIKE is the ANSI standard,
whereas MATCHES is an Informix extension.

Variable-text search strings can include the wildcards listed with LIKE or
MATCHES in the following table.

You cannot test a TEXT or BYTE column with LIKE or MATCHES.

 Symbol Meaning

LIKE

 % Evaluates to zero or more characters

 _ Evaluates to a single character

 \ Escapes special significance of next character

MATCHES

 * Evaluates to zero or more characters

? Evaluates to a single character (except null)

[] Evaluates to a single character or range of
values

\ Escapes special significance of next character
Composing Simple SELECT Statements 2-37

Creating a Comparison Condition
Using Exact-Text Comparisons

The following examples include a WHERE clause that searches for exact-text
comparisons by using the keyword LIKE or MATCHES or the equal sign (=)
relational operator. Unlike earlier examples, these examples illustrate how to
query a table that is not in the current database. You can access a table that is
not in the current database only if the table is part of an ANSI-compliant
database.

Although the database used previously in this chapter is the demonstration
database, the FROM clause in the following examples specifies the manatee
table, created by the owner bubba, which resides in an ANSI-compliant
database named syzygy. For more information on how to define tables that
are not in the current database, see the Informix Guide to SQL: Syntax

Each statement in Query 2-29 retrieves all the rows that have the single word
helmet in the description column as Query Result 2-29 shows.

Query 2-29
SELECT * FROM syzygy:bubba.manatee

WHERE description = 'helmet'
ORDER BY mfg_code

SELECT * FROM syzygy:bubba.manatee
WHERE description LIKE 'helmet'
ORDER BY mfg_code

SELECT * FROM syzygy:bubba.manatee
WHERE description MATCHES 'helmet'
ORDER BY mfg_code

Query Result 2-29
stock_no mfg_code description unit_price unit unit_type

991 ANT helmet $222.00 case 4/case
991 BKE helmet $269.00 case 4/case
991 JSK helmet $311.00 each 4/case
991 PRM helmet $234.00 case 4/case
991 SHR helmet $245.00 case 4/case
2-38 Informix Guide to SQL: Tutorial

Creating a Comparison Condition
Using a Single-Character Wildcard

The statements in Query 2-30 illustrate the use of a single-character wildcard
in a WHERE clause. Further, they demonstrate a query on a table that is not in
the current database. The stock table is in the database sloth. Beside being
outside the current demonstration database, sloth is on a separate database
server called meerkat.

For information about how to select tables from a database that is not the
current database, see “Selecting Tables from a Database Other Than the
Current Database” on page 2-101 in this manual, and the Informix Guide to
SQL: Syntax.

Query 2-30
SELECT * FROM sloth@meerkat:stock

WHERE manu_code LIKE '_R_'
AND unit_price >= 100

ORDER BY description, unit_price

SELECT * FROM sloth@meerkat:stock
WHERE manu_code MATCHES '?R?'

AND unit_price >= 100
ORDER BY description, unit_price

Each statement in Query 2-30 retrieves only those rows for which the middle
letter of the manu_code is R, as Query Result 2-30 shows.

Query Result 2-30
stock_num manu_code description unit_price unit unit_descr

 205 HRO 3 golf balls $312.00 case 24/case
 2 HRO baseball $126.00 case 24/case
 1 HRO baseball gloves $250.00 case 10 gloves/case
 7 HRO basketball $600.00 case 24/case
 102 PRC bicycle brakes $480.00 case 4 sets/case
 114 PRC bicycle gloves $120.00 case 10 pairs/case
 4 HRO football $480.00 case 24/case
 110 PRC helmet $236.00 case 4/case
 110 HRO helmet $260.00 case 4/case
 307 PRC infant jogger $250.00 each each
 306 PRC tandem adapter $160.00 each each
 308 PRC twin jogger $280.00 each each
 304 HRO watch $280.00 box 10/box
Composing Simple SELECT Statements 2-39

Creating a Comparison Condition
The comparison '_R_' (for LIKE) or '?R?' (for MATCHES) specifies, from left to
right, the following items:

■ Any single character

■ The letter R

■ Any single character

WHERE Clause with Restricted Single-Character Wildcard

Query 2-31 selects only those rows where the manu_code begins with A
through H and returns the rows Query Result 2-31 shows. The class test
'[A-H]' specifies any single letter from A through H, inclusive. No equivalent
wildcard symbol exists for the LIKE keyword.

Query 2-31
SELECT * FROM stock

WHERE manu_code MATCHES '[A-H]*'
ORDER BY description, manu_code, unit_price

Query Result 2-31
stock_num manu_code description unit_price unit unit_descr

205 ANZ 3 golf balls $312.00 case 24/case
205 HRO 3 golf balls $312.00 case 24/case
2 HRO baseball $126.00 case 24/case
3 HSK baseball bat $240.00 case 12/case
1 HRO baseball gloves $250.00 case 10 gloves/case
1 HSK baseball gloves $800.00 case 10 gloves/case
7 HRO basketball $600.00 case 24/case

.

.

.
110 ANZ helmet $244.00 case 4/case
110 HRO helmet $260.00 case 4/case
110 HSK helmet $308.00 case 4/case
.
.
.
301 ANZ running shoes $95.00 each each
301 HRO running shoes $42.50 each each
313 ANZ swim cap $60.00 box 12/box
6 ANZ tennis ball $48.00 case 24 cans/case
5 ANZ tennis racquet $19.80 each each
8 ANZ volleyball $840.00 case 24/case
9 ANZ volleyball net $20.00 each each

304 ANZ watch $170.00 box 10/box
304 HRO watch $280.00 box 10/box
2-40 Informix Guide to SQL: Tutorial

Creating a Comparison Condition
WHERE Clause with Variable-Length Wildcard

The statements in Query 2-32 use a wildcard at the end of a string to retrieve
all the rows where the description begins with the characters bicycle.

Query 2-32
SELECT * FROM stock

WHERE description LIKE 'bicycle%'
ORDER BY description, manu_code

SELECT * FROM stock
WHERE description MATCHES 'bicycle*'
ORDER BY description, manu_code

Either statement returns the rows that Query Result 2-32 shows.

The comparison 'bicycle%' or 'bicycle*' specifies the characters bicycle
followed by any sequence of zero or more characters. It matches bicycle
stem with stem matched by the wildcard. It matches to the characters
bicycle alone, if a row exists with that description.

Query 2-33 narrows the search by adding another comparison condition that
excludes a manu_code of PRC.

Query 2-33
SELECT * FROM stock

WHERE description LIKE 'bicycle%'
AND manu_code NOT LIKE 'PRC'

ORDER BY description, manu_code

Query Result 2-32
stock_num manu_code description unit_price unit unit_descr

102 PRC bicycle brakes $480.00 case 4 sets/case
102 SHM bicycle brakes $220.00 case 4 sets/case
114 PRC bicycle gloves $120.00 case 10 pairs/case
107 PRC bicycle saddle $70.00 pair pair
106 PRC bicycle stem $23.00 each each
101 PRC bicycle tires $88.00 box 4/box
101 SHM bicycle tires $68.00 box 4/box
105 PRC bicycle wheels $53.00 pair pair
105 SHM bicycle wheels $80.00 pair pair
Composing Simple SELECT Statements 2-41

Creating a Comparison Condition
The statement retrieves only the rows that Query Result 2-33 shows.

When you select from a large table and use an initial wildcard in the
comparison string (such as '%cycle'), the query often takes longer to execute.
Because indexes cannot be used, every row is searched.

MATCHES and Non-English Data

By default, Informix database servers use the U.S. English language
environment, called a locale, for database data. This default locale uses the
ISO 8859-1 code set. The U.S. English locale specifies that MATCHES will use
code-set order.

If your database contains non-English data, the MATCHES clause should use
the correct non-English code set for that language. Query 2-34 uses a SELECT
statement with a MATCHES clause in the WHERE clause to search the table,
abonnés, and to compare the selected information with the data in the nom
column.

Query 2-34
SELECT numéro,nom,prénom

FROM abonnés
WHERE nom MATCHES '[E-P]*'
ORDER BY nom;

The result of the comparison in this query is the same whether nom is A
CHAR or NCHAR column. The database server uses the sort order that the
locale specifies to determine what characters are in the range E through P.
This behavior is an exception to the rule that the database server collates
CHAR and VARCHAR columns in code-set order and NCHAR and
NVARCHAR columns in the sort order that the locale specifies.

Query Result 2-33
stock_num manu_code description unit_price unit unit_descr

102 SHM bicycle brakes $220.00 case 4 sets/case
101 SHM bicycle tires $68.00 box 4/box
105 SHM bicycle wheels $80.00 pair pair

GLS
2-42 Informix Guide to SQL: Tutorial

Creating a Comparison Condition
In Query Result 2-34a, the rows for Étaix, Ötker, and Øverst are not selected
and listed because, with ISO 8859-1 code-set order, the accented first letter of
each name is not in the E through P MATCHES range for the nom column.

The database server uses code-set order when the nom column is CHAR data
type. It also uses localized ordering when the column is NCHAR data type,
and you specify a nondefault locale.

In Query Result 2-34a, the rows for Étaix, Ötker, and Øverst are included in
the list because the database server uses a locale-specific comparison.

For more information on non-English data and locales, see the Informix Guide
to GLS Functionality.

Query Result 2-34a
numéro nom prénom

13607 Hammer Gerhard
13602 Hämmer Greta
13604 LaForêt Jean-Noël
13610 LeMaître Héloïse
13613 Llanero Gloria Dolores
13603 Montaña José Antonio
13611 Oatfield Emily

Query Result 2-34b
numéro nom prénom

13608 Étaix Émile
13607 Hammer Gerhard
13602 Hämmer Greta
13604 LaForêt Jean-Noël
13610 LeMaître Héloïse
13613 Llanero Gloria Dolores
13603 Montaña José Antonio
13611 Oatfield Emily
13605 Ötker Hans-Jürgen
13614 Øverst Per-Anders
Composing Simple SELECT Statements 2-43

Creating a Comparison Condition
Comparing for Special Characters

Query 2-35 uses the keyword ESCAPE with LIKE or MATCHES so you can
protect a special character from misinterpretation as a wildcard symbol.

Query 2-35
SELECT * FROM cust_calls

WHERE res_descr LIKE '%!%%' ESCAPE '!'

The ESCAPE keyword designates an escape character (it is! in this example)
that protects the next character so that it is interpreted as data and not as a
wildcard. In the example, the escape character causes the middle percent sign
(%) to be treated as data. By using the ESCAPE keyword, you can search for
occurrences of a percent sign (%) in the res_descr column by using the LIKE
wildcard percent sign (%). The query retrieves the row that Query Result 2-35
shows.

Using Subscripting in a WHERE Clause

You can use subscripting in the WHERE clause of a SELECT statement to specify
a range of characters or numbers in a column, as Query 2-36 shows.

Query 2-36
SELECT catalog_num, stock_num, manu_code, cat_advert,

cat_descr
FROM catalog
WHERE cat_advert[1,4] = 'High'

The subscript [1,4] causes Query 2-36 to retrieve all rows in which the first
four letters of the cat_advert column are High, as Query Result 2-36 shows.

Query Result 2-35
 customer_num 116
 call_dtime 1997-12-21 11:24
 user_id mannyn
 call_code I
 call_descr Second complaint from this customer! Received

two cases right-handed outfielder gloves
(1 HRO) instead of one case lefties.

 res_dtime 1997-12-27 08:19
 res_descr Memo to shipping (Ava Brown) to send case of

left-handed gloves, pick up wrong case; memo
to billing requesting 5% discount to placate
customer due to second offense and lateness
of resolution because of holiday
2-44 Informix Guide to SQL: Tutorial

Creating a Comparison Condition
Query Result 2-36
 catalog_num 10004
 stock_num 2
 manu_code HRO
 cat_advert Highest Quality Ball Available, from

Hand-Stitching to the Robinson Signature
 cat_descr
Jackie Robinson signature ball. Highest professional quality, used by National
League.

 catalog_num 10005
 stock_num 3
 manu_code HSK
 cat_advert High-Technology Design Expands the Sweet Spot
 cat_descr
Pro-style wood. Available in sizes: 31, 32, 33, 34, 35.

 catalog_num 10008
 stock_num 4
 manu_code HRO
 cat_advert Highest Quality Football for High School and

Collegiate Competitions
 cat_descr
NFL-style, pigskin.

 catalog_num 10012
 stock_num 6
 manu_code SMT
 cat_advert High-Visibility Tennis, Day or Night
 cat_descr
Soft yellow color for easy visibility in sunlight or
artificial light.

 catalog_num 10043
 stock_num 202
 manu_code KAR
 cat_advert High-Quality Woods Appropriate for High School

Competitions or Serious Amateurs
 cat_descr
Full set of woods designed for precision control and
power performance.

 catalog_num 10045
 stock_num 204
 manu_code KAR
 cat_advert High-Quality Beginning Set of Irons

Appropriate for High School Competitions
 cat_descr
Ideally balanced for optimum control. Nylon covered shaft.

 catalog_num 10068
 stock_num 310
 manu_code ANZ
 cat_advert High-Quality Kickboard
 cat_descr
White. Standard size.
Composing Simple SELECT Statements 2-45

Using a FIRST Clause to Select Specific Rows
Using a FIRST Clause to Select Specific Rows
You can include a FIRST clause in a SELECT statement to specify that the query
returns only a specified number of the first rows that match the conditions of
the SELECT statement. You include a number immediately following the
FIRST keyword to specify the maximum number of rows that the query can
return. The rows that the database server returns when you execute a SELECT
statement with a FIRST clause might differ, depending on whether the
statement also includes an ORDER BY clause.

You cannot use a FIRST clause when the SELECT statement is a subquery or
part of a view definition.

For information about restrictions on use of the FIRST clause, see the
description of the SELECT statement in the Informix Guide to SQL: Syntax.

FIRST Clause Without an ORDER BY Clause

If you do not include an ORDER BY clause in a SELECT statement with a FIRST
clause, any rows that match the conditions of the SELECT statement might be
returned. In other words, the database server determines which of the
qualifying rows to return, and the query result can vary depending on the
query plan that the optimizer chooses.

Query 2-37 uses the FIRST clause to return the first five rows from the state
table.

Query 2-37
SELECT FIRST 5 *

FROM state

Query Result 2-37
code sname

AK Alaska
HI Hawaii
CA California
OR Oregon
WA Washington
2-46 Informix Guide to SQL: Tutorial

Using a FIRST Clause to Select Specific Rows
You can use a FIRST clause when you simply want to know the names of all
the columns, and the type of data that a table contains, or to test a query that
otherwise would return many rows. Query 2-38 shows how to use the FIRST
clause to return column values for the first row of a table.

Query 2-38
SELECT FIRST 1 *

FROM orders

FIRST Clause with an ORDER BY Clause

You can include an ORDER BY clause in a SELECT statement with a FIRST
clause to return rows that contain the highest or lowest values for a specified
column. Query 2-38 shows a query that includes an ORDER BY clause to
return (by alphabetical order) the first five states contained in the state table.
Query 2-39, which is the same as Query 2-37 except for the ORDER BY clause,
returns a different set of rows than Query 2-37.

Query 2-39
SELECT FIRST 5 *

FROM state ORDER BY sname

Query Result 2-38
order_num 1001
order_date 05/20/1998
customer_num 104
ship_instruct express
backlog n
po_num B77836
ship_date 06/01/1998
ship_weight 20.40
ship_charge $10.00
paid_date 07/22/1998

Query Result 2-39
code sname

AL Alabama
AK Alaska
AZ Arizona
AR Arkansas
CA California
Composing Simple SELECT Statements 2-47

Using a FIRST Clause to Select Specific Rows
Query 2-40 shows how to use a FIRST clause in a query with an ORDER BY
clause to find the 10 most expensive items listed in the stock table.

Query 2-40
SELECT FIRST 10 description, unit_price

FROM stock ORDER BY unit_price DESC

FIRST Clause in a Union Query

With Informix Dynamic Server with Advanced Decision Support and
Extended Parallel Options, you can also use the FIRST clause to select the first
rows that result from a union query. Query 2-41 uses a FIRST clause to return
the first five rows of a union between the stock and items tables.

Query 2-41
SELECT FIRST 5 DISTINCT stock_num, manu_code

FROM stock
WHERE unit_price < 55.00

UNION

SELECT stock_num, manu_code
FROM items
WHERE quantity > 3

Query Result 2-40
description unit_price

football $960.00
volleyball $840.00
baseball gloves $800.00
18-spd, assmbld $685.90
irons/wedge $670.00
basketball $600.00
12-spd, assmbld $549.00
10-spd, assmbld $499.99
football $480.00
bicycle brakes $480.00

AD/XP

Query Result 2-41
stock_num manu_code

311 SHM
9 ANZ
301 HRO
6 ANZ
204 KAR
2-48 Informix Guide to SQL: Tutorial

Expressions and Derived Values
Expressions and Derived Values
You are not limited to selecting columns by name. You can use the SELECT
clause of a SELECT statement to perform computations on column data and
to display information derived from the contents of one or more columns. To
do this, list an expression in the select list.

An expression consists of a column name, a constant, a quoted string, a
keyword, or any combination of these items connected by operators. It can
also include host variables (program data) when the SELECT statement is
embedded in a program.

Arithmetic Expressions

An arithmetic expression contains at least one of the arithmetic operators listed
in the following table and produces a number.

Important: You cannot use TEXT or BYTE columns in arithmetic expressions.

Operator Operation

+ addition

- subtraction

* multiplication

/ division
Composing Simple SELECT Statements 2-49

Expressions and Derived Values
Arithmetic operations enable you to see the results of proposed
computations without actually altering the data in the database. You can add
an INTO TEMP clause to save the altered data in a temporary table for further
reference, computations, or impromptu reports. Query 2-42 calculates a
7 percent sales tax on the unit_price column when the unit_price is $400 or
more (but does not update it in the database).

Query 2-42
SELECT stock_num, description, unit, unit_descr,

unit_price, unit_price * 1.07
FROM stock
WHERE unit_price >= 400

If you are using DB-Access or Relational Object Manager, the result is
displayed in a column labeled expression, as Query Result 2-42 shows.

Query Result 2-42
stock_num description unit unit_descr unit_price (expression)

1 baseball gloves case 10 gloves/case $800.00 $856.0000
1 baseball gloves case 10 gloves/case $450.00 $481.5000
4 football case 24/case $960.00 $1027.2000
4 football case 24/case $480.00 $513.6000
7 basketball case 24/case $600.00 $642.0000
8 volleyball case 24/case $840.00 $898.8000

102 bicycle brakes case 4 sets/case $480.00 $513.6000
111 10-spd, assmbld each each $499.99 $534.9893
112 12-spd, assmbld each each $549.00 $587.4300
113 18-spd, assmbld each each $685.90 $733.9130
203 irons/wedge case 2 sets/case $670.00 $716.9000
2-50 Informix Guide to SQL: Tutorial

Expressions and Derived Values
Query 2-43 calculates a surcharge of $6.50 on orders when the quantity
ordered is less than 5.

Query 2-43
SELECT item_num, order_num, quantity,

total_price, total_price + 6.50
FROM items
WHERE quantity < 5

If you are using DB-Access or Relational Object Manager, the result appears
in a column labeled expression, as Query Result 2-43 shows.

Query Result 2-43
item_num order_num quantity total_price (expression)

1 1001 1 $250.00 $256.50
1 1002 1 $960.00 $966.50
2 1002 1 $240.00 $246.50
1 1003 1 $20.00 $26.50
2 1003 1 $840.00 $846.50
1 1004 1 $250.00 $256.50
2 1004 1 $126.00 $132.50
3 1004 1 $240.00 $246.50
4 1004 1 $800.00 $806.50
.
.
.
1 1021 2 $75.00 $81.50
2 1021 3 $225.00 $231.50
3 1021 3 $690.00 $696.50
4 1021 2 $624.00 $630.50
1 1022 1 $40.00 $46.50
2 1022 2 $96.00 $102.50
3 1022 2 $96.00 $102.50
1 1023 2 $40.00 $46.50
2 1023 2 $116.00 $122.50
3 1023 1 $80.00 $86.50
4 1023 1 $228.00 $234.50
5 1023 1 $170.00 $176.50
6 1023 1 $190.00 $196.50
Composing Simple SELECT Statements 2-51

Expressions and Derived Values
Query 2-44 calculates and displays in an expression column (if you are using
DB-Access or Relational Object Manager) the interval between when the
customer call was received (call_dtime) and when the call was resolved
(res_dtime), in days, hours, and minutes.

Query 2-44
SELECT customer_num, user_id, call_code,

call_dtime, res_dtime - call_dtime
FROM cust_calls
ORDER BY user_id

Using Display Labels

You can assign a display label to a computed or derived data column to replace
the default column header expression. In Query 2-42, Query 2-43, and Query
2-44, the derived data is shown in a column called (expression). Query 2-45
also presents derived values, but the column that displays the derived values
has the descriptive header taxed.

Query 2-45
SELECT stock_num, description, unit, unit_descr,

unit_price, unit_price * 1.07 taxed
FROM stock
WHERE unit_price >= 400

Query Result 2-44
customer_num user_id call_code call_dtime (expression)

116 mannyn I 1997-12-21 11:24 5 20:55
116 mannyn I 1997-11-28 13:34 0 03:13
106 maryj D 1998-06-12 08:20 0 00:05
121 maryj O 1998-07-10 14:05 0 00:01
127 maryj I 1998-07-31 14:30
110 richc L 1998-07-07 10:24 0 00:06
119 richc B 1998-07-01 15:00 0 17:21
2-52 Informix Guide to SQL: Tutorial

Expressions and Derived Values
Query Result 2-45 shows that the label taxed is assigned to the expression in
the select list that displays the results of the operation unit_price * 1.07.

In Query 2-46, the label surcharge is defined for the column that displays the
results of the operation total_price + 6.50.

Query 2-46
SELECT item_num, order_num, quantity,

total_price, total_price + 6.50 surcharge
FROM items
WHERE quantity < 5

The surcharge column is labeled in the output, as Query Result 2-46 shows.

Query Result 2-45
stock_num description unit unit_descr unit_price taxed

1 baseball gloves case 10 gloves/case $800.00 $856.0000
1 baseball gloves case 10 gloves/case $450.00 $481.5000
4 football case 24/case $960.00 $1027.2000
4 football case 24/case $480.00 $513.6000
7 basketball case 24/case $600.00 $642.0000
8 volleyball case 24/case $840.00 $898.8000

102 bicycle brakes case 4 sets/case $480.00 $513.6000
111 10-spd, assmbld each each $499.99 $534.9893
112 12-spd, assmbld each each $549.00 $587.4300
113 18-spd, assmbld each each $685.90 $733.9130
203 irons/wedge case 2 sets/case $670.00 $716.9000

Query Result 2-46
item_num order_num quantity total_price surcharge

.

.

.
2 1013 1 $36.00 $42.50
3 1013 1 $48.00 $54.50
4 1013 2 $40.00 $46.50
1 1014 1 $960.00 $966.50
2 1014 1 $480.00 $486.50
1 1015 1 $450.00 $456.50
1 1016 2 $136.00 $142.50
2 1016 3 $90.00 $96.50
3 1016 1 $308.00 $314.50
4 1016 1 $120.00 $126.50
1 1017 4 $150.00 $156.50
2 1017 1 $230.00 $236.50
.
.
.

Composing Simple SELECT Statements 2-53

Expressions and Derived Values
Query 2-47 assigns the label span to the column that displays the results of
subtracting the DATETIME column call_dtime from the DATETIME column
res_dtime.

Query 2-47
SELECT customer_num, user_id, call_code,

call_dtime, res_dtime - call_dtime span
FROM cust_calls
ORDER BY user_id

The span column is labeled in the output, as Query Result 2-47 shows.

CASE Expressions

A CASE expression is a conditional expression, which is similar to the concept
of the CASE statement in programming languages. You can use a CASE
expression when you wish to change the way data is represented. The CASE
expression allows a statement to return one of several possible results,
depending on which of several condition tests evaluates to TRUE.

Consider a column that represents martial status numerically as 1, 2, 3, 4 with
the corresponding meaning single, married, divorced, widowed. In some
cases, you might prefer to store the short values (1,2,3,4) for database
efficiency, but employees in human resources might prefer the more
descriptive values (single, married, divorced, widowed). The CASE
expression makes such conversions between different sets of values easy.

Query Result 2-47
customer_num user_id call_code call_dtime span

116 mannyn I 1997-12-21 11:24 5 20:55
116 mannyn I 1997-11-28 13:34 0 03:13
106 maryj D 1998-06-12 08:20 0 00:05
121 maryj O 1998-07-10 14:05 0 00:01
127 maryj I 1998-07-31 14:30
110 richc L 1998-07-07 10:24 0 00:06
119 richc B 1998-07-01 15:00 0 17:21
2-54 Informix Guide to SQL: Tutorial

Expressions and Derived Values
The following example shows a CASE statement with multiple WHEN clauses
that returns more descriptive values for the manu_code column of the stock
table. If none of the WHEN conditions is true, NULL is the default result. (You
can omit the ELSE NULL clause.)

SELECT
CASE

WHEN manu_code = "HRO" THEN "Hero"
WHEN manu_code = "SHM" THEN "Shimara"
WHEN manu_code = "PRC" THEN "ProCycle"
WHEN manu_code = "ANZ" THEN "Anza"
ELSE NULL

END
FROM stock;

You must include at least one WHEN clause within the CASE expression;
subsequent WHEN clauses and the ELSE clause are optional. If no WHEN
condition evaluates to true, the resulting value is null. You can use the IS
NULL expression to handle null results. For information on handling null
values, see the Informix Guide to SQL: Syntax.

The following example shows a simple CASE expression that returns a
character string value to flag any orders from the orders table that have not
been shipped to the customer:

Query 2-48
CASE

WHEN ship_date IS NULL
THEN "order not shipped"

END
FROM orders;
Composing Simple SELECT Statements 2-55

Expressions and Derived Values
For information about how to use the CASE expression to update a column,
see “Using a CASE Expression to Update a Column” on page 4-16.

Sorting on Derived Columns

When you want to use ORDER BY as an expression, you can use either the
display label assigned to the expression, or an integer, as Query 2-49 shows.

Query 2-49
SELECT customer_num, user_id, call_code,

call_dtime, res_dtime - call_dtime span
FROM cust_calls
ORDER BY span

Query 2-49 retrieves the same data from the cust_calls table as Query 2-47. In
Query 2-49, the ORDER BY clause causes the data to be displayed in ascending
order of the derived values in the span column, as Query Result 2-49 shows.

Query Result 2-48
order_num order_date (expression)

1001 05/20/1998
1002 05/21/1998
1003 05/22/1998
1004 05/22/1998
1005 05/24/1998
1006 05/30/1998 order not shipped
1007 05/31/1998
1008 06/07/1998
1009 06/14/1998
1010 06/17/1998
1011 06/18/1998
1012 06/18/1998
1013 06/22/1998
1014 06/25/1998
1015 06/27/1998
1016 06/29/1998
1017 07/09/1998
1018 07/10/1998
1019 07/11/1998
1020 07/11/1998
1021 07/23/1998
1022 07/24/1998
1023 07/24/1998
2-56 Informix Guide to SQL: Tutorial

Using Functions in SELECT Statements
Query 2-50 uses an integer to represent the result of the operation
res_dtime - call_dtime and retrieves the same rows that appear in Query
Result 2-49.

Query 2-50
SELECT customer_num, user_id, call_code,

call_dtime, res_dtime - call_dtime span
FROM cust_calls
ORDER BY 5

Using Functions in SELECT Statements
In addition to column names and operators, an expression can also include
one or more functions. This section describes how to use aggregate functions,
time functions, conversion functions, string manipulation functions, and
other functions.

For information about the syntax of the following SQL functions and other
SQL functions, see the Expressions segment in the Informix Guide to SQL:
Syntax.

Aggregate Functions

All Informix database servers support the following aggregate functions:

■ AVG

■ COUNT

■ MAX

■ MIN

■ RANGE

■ STDEV

Query Result 2-49customer_num user_id call_code call_dtime span
127 maryj I 1998-07-31 14:30
121 maryj O 1998-07-10 14:05 0 00:01
106 maryj D 1998-06-12 08:20 0 00:05
110 richc L 1998-07-07 10:24 0 00:06
116 mannyn I 1997-11-28 13:34 0 03:13
119 richc B 1998-07-01 15:00 0 17:21
116 mannyn I 1997-12-21 11:24 5 20:55
Composing Simple SELECT Statements 2-57

Using Functions in SELECT Statements
■ SUM

■ VARIANCE

Aggregate functions take on values that depend on all the rows selected and
return information about rows, not the rows themselves.

Important: You cannot use aggregate functions with TEXT or BYTE columns.

Aggregates are often used to summarize information about groups of rows
in a table. This use is discussed in Chapter 3, “Composing Advanced
SELECT Statements.” When you apply an aggregate function to an entire
table, the result contains a single row that summarizes all of the selected
rows.

Using the COUNT Function

Query 2-51 counts and displays the total number of rows in the stock table.

Query 2-51
SELECT COUNT(*)

FROM stock

Query 2-52 includes a WHERE clause to count specific rows in the stock table;
in this case, only those rows that have a manu_code of SHM.

Query 2-52
SELECT COUNT (*)

FROM stock
WHERE manu_code = 'SHM'

Query Result 2-51
(count(*))

73

Query Result 2-52
(count(*))

17
2-58 Informix Guide to SQL: Tutorial

Using Functions in SELECT Statements
By including the keyword DISTINCT (or its synonym UNIQUE) and a column
name in Query 2-53, you can tally the number of different manufacturer
codes in the stock table.

Query 2-53
SELECT COUNT (DISTINCT manu_code)

FROM stock

Using the AVG Function

Query 2-54 computes the average unit_price of all rows in the stock table.

Query 2-54
SELECT AVG (unit_price)

FROM stock

Query 2-55 computes the average unit_price of just those rows in the stock
table that have a manu_code of SHM.

Query 2-55
SELECT AVG (unit_price)

FROM stock
WHERE manu_code = 'SHM'

Query Result 2-53
(count)

9

Query Result 2-54
(avg)

$197.14

Query Result 2-55
(avg)

$204.93
Composing Simple SELECT Statements 2-59

Using Functions in SELECT Statements
Using the MAX and MIN Functions

You can combine aggregate functions in the same SELECT statement. For
example, you can include both the MAX and the MIN functions in the select
list, as Query 2-56 shows.

Query 2-56
SELECT MAX (ship_charge), MIN (ship_charge)

FROM orders

Query 2-56 finds and displays both the highest and lowest ship_charge in the
orders table, as Query Result 2-56 shows.

Using the SUM Function

Query 2-57 calculates the total ship_weight of orders that were shipped on
July 13, 1998.

Query 2-57
SELECT SUM (ship_weight)

FROM orders
WHERE ship_date = '07/13/1998'

Using the RANGE Function

The RANGE function computes the range for a sample of a population. It
computes the difference between the maximum and the minimum values.

Query Result 2-56
(max) (min)

$25.20 $5.00

Query Result 2-57
(sum)

130.5
2-60 Informix Guide to SQL: Tutorial

Using Functions in SELECT Statements
You can apply the RANGE function only to numeric columns. Query 2-58
finds the range of prices for items in the stock table:

Query 2-58
SELECT RANGE(unit_price) FROM stock

As with other aggregates, the RANGE function applies to the rows of a group
when the query includes a GROUP BY clause, which Query 2-59 shows.

Query 2-59
SELECT RANGE(unit_price) FROM stock
GROUP BY manu_code

Using the STDEV Function

The STDEV function computes the standard deviation for a sample of a
population. It is the square root of the VARIANCE function.

You can apply the STDEV function only to numeric columns. The following
query finds the standard deviation on a population:

SELECT STDEV(age) FROM u_pop WHERE u_pop.age > 0

Query Result 2-58
(range)

955.50

Query Result 2-59

(range)

820.20
595.50
720.00
225.00
632.50
0.00
460.00
645.90
425.00
Composing Simple SELECT Statements 2-61

Using Functions in SELECT Statements
As with the other aggregates, the STDEV function applies to the rows of a
group when the query includes a GROUP BY clause, as shown in the following
example:

SELECT STDEV(age) FROM u_pop
GROUP BY birth
WHERE STDEV(age) > 0

Nulls are ignored unless every value in the specified column is null. If every
column value is null, the STDEV function returns a null for that column.

For more information about the STDEV function, see the Expression segment
of the Informix Guide to SQL: Syntax.

Using the VARIANCE Function

The VARIANCE function returns the variance for a sample of values as an
unbiased estimate of the variance of the population. It computes the
following value:

(SUM(Xi**2) - (SUM(Xi)**2)/N)/(N-1)

In this example, Xi is each value in the column and N is the total number of
values in the column. You can apply the VARIANCE function only to numeric
columns. The following query finds the variance on a population:

SELECT VARIANCE(age) FROM u_pop WHERE u_pop.age > 0

As with the other aggregates, the VARIANCE function applies to the rows of
a group when the query includes a GROUP BY clause, which the following
example shows:

SELECT VARIANCE(age) FROM u_pop
GROUP BY birth
WHERE VARIANCE(age) > 0

Nulls are ignored unless every value in the specified column is null. If every
column value is null, the VARIANCE function returns a null for that column.

For more information about the VARIANCE function, see the Expression
segment of the Informix Guide to SQL: Syntax.
2-62 Informix Guide to SQL: Tutorial

Using Functions in SELECT Statements
Applying Functions to Expressions

Query 2-60 shows how you can apply functions to expressions, and you can
supply display labels for their results.

Query 2-60
SELECT MAX (res_dtime - call_dtime) maximum,

MIN (res_dtime - call_dtime) minimum,
AVG (res_dtime - call_dtime) average
FROM cust_calls

Query 2-60 finds and displays the maximum, minimum, and average
amount of time (in days, hours, and minutes) between the reception and
resolution of a customer call and labels the derived values appropriately.
Query Result 2-60 shows these amounts of time.

Time Functions

You can use the time functions DAY, MDY, MONTH, WEEKDAY, and YEAR in
either the SELECT clause or the WHERE clause of a query. These functions
return a value that corresponds to the expressions or arguments that you use
to call the function. You can also use the CURRENT function to return a value
with the current date and time, or use the EXTEND function to adjust the
precision of a DATE or DATETIME value.

Using DAY and CURRENT Functions

Query 2-61 returns the day of the month for the call_dtime and res_dtime
columns in two expression columns.

Query 2-61
SELECT customer_num, DAY (call_dtime), DAY (res_dtime)

FROM cust_calls

Query Result 2-60
maximum minimum average

5 20:55 0 00:01 1 02:56
Composing Simple SELECT Statements 2-63

Using Functions in SELECT Statements
Query 2-62 uses the DAY and CURRENT functions to compare column values
to the current day of the month. It selects only those rows where the value is
earlier than the current day.

Query 2-62
SELECT customer_num, DAY (call_dtime), DAY (res_dtime)

FROM cust_calls
WHERE DAY (call_dtime) < DAY (CURRENT)

Query 2-63 shows another use of the CURRENT function, selecting rows
where the day is earlier than the current one.

Query 2-63
SELECT customer_num, call_code, call_descr

FROM cust_calls
WHERE call_dtime < CURRENT YEAR TO DAY

Query Result 2-61
customer_num (expression) (expression)

106 12 12
110 7 7
119 1 2
121 10 10
127 31
116 28 28
116 21 27

Query Result 2-62
customer_num (expression) (expression)

106 12 12
110 7 7
119 1 2
121 10 10
2-64 Informix Guide to SQL: Tutorial

Using Functions in SELECT Statements
Using the MONTH Function

Query 2-64 uses the MONTH function to extract and show what month the
customer call was received and resolved, and it uses display labels for the
resulting columns. However, it does not make a distinction between years.

Query 2-64
SELECT customer_num,

MONTH (call_dtime) call_month,
MONTH (res_dtime) res_month
FROM cust_calls

Query Result 2-63
customer_num 106
call_code D
call_descr Order was received, but two of the cans of ANZ tennis balls

within the case were empty

customer_num 116
call_code I
call_descr Received plain white swim caps (313 ANZ) instead of navy with

team logo (313 SHM)

customer_num 116
call_code I
call_descr Second complaint from this customer! Received two cases

right-handed outfielder gloves (1 HRO) instead of one case
lefties.

Query Result 2-64
customer_num call_month res_month

106 6 6
110 7 7
119 7 7
121 7 7
127 7
116 11 11
116 12 12
Composing Simple SELECT Statements 2-65

Using Functions in SELECT Statements
Query 2-65 uses the MONTH function plus DAY and CURRENT to show what
month the customer-call was received and resolved if DAY is earlier than the
current day.

Query 2-65
SELECT customer_num,

MONTH (call_dtime) called,
MONTH (res_dtime) resolved
FROM cust_calls
WHERE DAY (res_dtime) < DAY (CURRENT)

Using the WEEKDAY Function

Query 2-66 uses the WEEKDAY function to indicate which day of the week
calls are received and resolved (0 represents Sunday, 1 is Monday, and so on),
and the expression columns are labeled.

Query 2-66
SELECT customer_num,

WEEKDAY (call_dtime) called,
WEEKDAY (res_dtime) resolved
FROM cust_calls
ORDER BY resolved

Query Result 2-65
customer_num called resolved

106 6 6
119 7 7
121 7 7

Query Result 2-66
customer_num called resolved

127 3
110 0 0
119 1 2
121 3 3
116 3 3
106 3 3
116 5 4
2-66 Informix Guide to SQL: Tutorial

Using Functions in SELECT Statements
Query 2-67 uses the COUNT and WEEKDAY functions to count how many
calls were received on a weekend. This kind of statement can give you an
idea of customer-call patterns or indicate whether overtime pay might be
required.

Query 2-67
SELECT COUNT(*)

FROM cust_calls
WHERE WEEKDAY (call_dtime) IN (0,6)

Using the YEAR Function

Query 2-68 retrieves rows where the call_dtime is earlier than the beginning
of the current year.

Query 2-68
SELECT customer_num, call_code,

YEAR (call_dtime) call_year,
YEAR (res_dtime) res_year
FROM cust_calls
WHERE YEAR (call_dtime) < YEAR (TODAY)

Formatting DATETIME Values

In Query 2-69, the EXTEND function displays only the specified subfields to
restrict the two DATETIME values.

Query 2-69
SELECT customer_num,

EXTEND (call_dtime, month to minute) call_time,
EXTEND (res_dtime, month to minute) res_time
FROM cust_calls
ORDER BY res_time

Query Result 2-67
(count(*))

4

Query Result 2-68
customer_num call_code call_year res_year

116 I 1997 1997
116 I 1997 1997
Composing Simple SELECT Statements 2-67

Using Functions in SELECT Statements
Query Result 2-69 returns the month-to-minute range for the columns
labeled call_time and res_time and gives an indication of the work load.

Date-Conversion Functions

The following conversion functions convert between date and character
values:

■ DATE

■ TO_CHAR

■ TO_DATE

You can use a date-conversion function anywhere you use an expression.

Using the DATE Function

The DATE function converts a character string to a DATE value. In Query 2-70,
the DATE function converts a character string to a DATE value to allow for
comparisons with DATETIME values. The query retrieves DATETIME values
only when call_dtime is later than the specified DATE.

Query 2-70
SELECT customer_num, call_dtime, res_dtime

FROM cust_calls
WHERE call_dtime > DATE ('12/31/97')

Query Result 2-69
customer_num call_time res_time

127 07-31 14:30
106 06-12 08:20 06-12 08:25
119 07-01 15:00 07-02 08:21
110 07-07 10:24 07-07 10:30
121 07-10 14:05 07-10 14:06
116 11-28 13:34 11-28 16:47
116 12-21 11:24 12-27 08:19

IDS

Query Result 2-70
customer_num call_dtime res_dtime

106 1998-06-12 08:20 1998-06-12 08:25
110 1998-07-07 10:24 1998-07-07 10:30
119 1998-07-01 15:00 1998-07-02 08:21
121 1998-07-10 14:05 1998-07-10 14:06
127 1998-07-31 14:30
2-68 Informix Guide to SQL: Tutorial

Using Functions in SELECT Statements
Query 2-71 converts DATETIME values to DATE format and displays the
values, with labels, only when call_dtime is greater than or equal to the
specified date.

Query 2-71
SELECT customer_num,

DATE (call_dtime) called,
DATE (res_dtime) resolved
FROM cust_calls
WHERE call_dtime >= DATE ('1/1/98')

Using the TO_CHAR Function

The TO_CHAR function converts DATETIME (OR DATE) values to character
string values. The TO_CHAR function evaluates a DATETIME value according
to the date-formatting directive that you specify and returns a NVARCHAR
value. For a complete list of the supported date-formatting directives, see the
description of the GL_DATETIME environment variable in the Informix Guide
to GLS Functionality.

Query 2-73 uses the TO_CHAR function to convert a DATETIME value to a
more readable character string.

Query 2-72
SELECT customer_num,

 TO_CHAR(call_dtime, "%A %B %d %Y") call_date
FROM cust_call
WHERE call_code = "B"

Query Result 2-71
customer_num called resolved

106 06/12/1998 06/12/1998
110 07/07/1998 07/07/1998
119 07/01/1998 07/02/1998
121 07/10/1998 07/10/1998
127 07/31/1998

Query Result 2-72
customer_num 119
call_date Friday July 01 1998
Composing Simple SELECT Statements 2-69

Using Functions in SELECT Statements
Query 2-73 uses the TO_CHAR function to convert DATE values to more
readable character strings.

Query 2-73
SELECT order_num,

 TO_CHAR(ship_date,"%A %B %d %Y") date_shipped
FROM orders
WHERE paid_date IS NULL

Using the TO_DATE Function

The TO_DATE function accepts an argument of a character data type and
converts this value to a DATETIME value. The TO_DATE function evaluates a
character string according to the date-formatting directive that you specify
and returns a DATETIME value. For a complete list of the supported date-
formatting directives, see the description of the GL_DATETIME environment
variable in the Informix Guide to GLS Functionality.

Query 2-74 uses the TO_DATE function to convert character string values to
DATETIME values whose format you specify.

Query 2-74
SELECT customer_num, call_descr

FROM cust_calls
WHERE call_dtime = TO_DATE("1998-07-07 10:24",
"%Y-%m-%d %H:%M").

Query Result 2-73
order_num 1004
date_shipped Monday May 30 1998

order_num 1006
date_shipped

order_num 1007
date_shipped Sunday June 05 1998

order_num 1012
date_shipped Wednesday June 29 1998

order_num 1016
date_shipped Tuesday July 12 1998

order_num 1017
date_shipped Wednesday July 13 1998
2-70 Informix Guide to SQL: Tutorial

Using Functions in SELECT Statements
You can use the DATE or TO_DATE function to convert a character string to a
DATE value. One advantage of the TO_DATE function is that it allows you to
specify a format for the value returned. (You can use the TO_DATE function,
which always returns a DATETIME value, to convert a character string to a
DATE value because the database server implicitly handles conversions
between DATE and DATETIME values.)

Query 2-75 uses the TO_DATE function to convert character string values to
DATE values whose format you specify.

Query 2-75
SELECT order_num, paid_date

FROM orders
WHERE order_date = TO_DATE("6/7/98", "%m/%d/%iY")

String Manipulation Functions

String manipulation functions accept arguments of type CHAR, NCHAR,
VARCHAR, NVARCHAR, or LVARCHAR. You can use a string manipulation
function anywhere you use an expression.

The following functions convert between upper and lower case letters in a
character string:

■ LOWER

■ UPPER

■ INITCAP

Query Result 2-74
customer_num 110

call_descr Order placed one month ago (6/7) not received.

Query Result 2-75
order_num paid_date

1008 07/21/1998

IDS
Composing Simple SELECT Statements 2-71

Using Functions in SELECT Statements
The following functions manipulate character strings in various ways:

■ REPLACE

■ SUBSTR

■ SUBSTRING

■ LPAD

■ RPAD

Using the LOWER Function

You can use the LOWER function to replace every upper case letter in a
character string with a lower case letter. The LOWER function accepts an
argument of a character data type and returns a value of the same data type
as the argument you specify.

Query 2-76 uses the LOWER function to convert any upper case letters in a
character string to lower case letters.

Query 2-76
SELECT manu_code, LOWER(manu_code)

FROM items
WHERE order_num = 1018.

Using the UPPER Function

You can use the UPPER function to replace every lower case letter in a
character string with an upper case letter. The UPPER function accepts an
argument of a character data type and returns a value of the same data type
as the argument you specify.

Query Result 2-76
manu_code (expression)

PRC prc
KAR kar
PRC prc
SMT smt
HRO hro
2-72 Informix Guide to SQL: Tutorial

Using Functions in SELECT Statements
Query 2-77 uses the UPPER function to convert any upper case letters in a
character string to lower case letters.

Query 2-77
SELECT call_code, UPPER(code_descr)

FROM call_type

Using the INITCAP Function

You can use the INITCAP function to replace the first letter of every word in a
character string with an upper case letter. The INITCAP function assumes a
new word whenever the function encounters a letter that is preceded by any
character other than a letter. The INITCAP function accepts an argument of a
character data type and returns a value of the same data type as the argument
you specify.

Query 2-78 uses the INITCAP function to convert the first letter of every word
in a character string to an upper case letter.

Query 2-78
SELECT INITCAP(description)

FROM stock
WHERE manu_code = "ANZ"

Query Result 2-77
call_code (expression)

B BILLING ERROR
D DAMAGED GOODS
I INCORRECT MERCHANDISE SENT
L LATE SHIPMENT
O OTHER

Query Result 2-78
(expression)

3 Golf Balls
Golf Shoes
Helmet
Kick Board
Running Shoes
Swim Cap
Tennis Ball
Tennis Racquet
Volleyball
Volleyball Net
Watch
Composing Simple SELECT Statements 2-73

Using Functions in SELECT Statements
Using the REPLACE Function

You can use the REPLACE function to replace a certain set of characters in a
character string with other characters.

In Query 2-79 the REPLACE function replaces the unit column value each
with item for every row that the query returns. The first argument of the
REPLACE function is the expression to be evaluated. The second argument
specifies the characters that you wish to replace. The third argument specifies
a new character string to replace the characters removed.

Query 2-79
SELECT stock_num, REPLACE(unit,"each", "item") cost_per,
unit_price

FROM stock
WHERE manu_code = "HRO"

Using the SUBSTRING and SUBSTR Functions

You can use the SUBSTRING and SUBSTR functions to return a portion of a
character string. You specify the start position and length (optional) to
determine which portion of the character string the function returns.

Query Result 2-79
stock_num cost_per unit_price

1 case$250.00
2 case$126.00
4 case$480.00
7 case$600.00
110 case$260.00
205 case$312.00
301 item$ 42.50
302 item$ 4.50
304 box $280.00
305 case$ 48.00
309 case$ 40.00
312 box $ 72.00
2-74 Informix Guide to SQL: Tutorial

Using Functions in SELECT Statements
Using the SUBSTRING Function

You can use the SUBSTRING function to return some portion of a character
string. You specify the start position and length (optional) to determine which
portion of the character string the function returns. You can specify a positive
or negative number for the start position. A start position of 1 specifies that
the SUBSTRING function begins from the first position in the string. When the
start position is zero (0) or a negative number, the SUBSTRING function counts
backward from the beginning of the string.

Query 2-80 shows an example of the SUBSTRING function, which returns the
first four characters for any sname column values that the query returns. In
this example, the SUBSTRING function starts at the beginning of the string
and returns four characters counting forward from the start position.

Query 2-80
SELECT sname, SUBSTRING(sname FROM 1 FOR 4)

FROM state
WHERE code = "AZ"

In Query 2-81 the SUBSTRING function specifies a start position of 6 but does
not specify the length. The function returns a character string that extends
from the sixth position to the end of the string.

Query 2-81
SELECT sname, SUBSTRING(sname FROM 6)

FROM state
WHERE code = "WV"

Query Result 2-80
sname (expression)

Arizona Ariz

Query Result 2-81
sname (expression)

West Virginia Virginia
Composing Simple SELECT Statements 2-75

Using Functions in SELECT Statements
In Query 2-82, the SUBSTRING function returns only the first character for any
sname column value that the query returns. For the SUBSTRING function, a
start position of -2 counts backwards three positions (0, -1, -2) from the start
position of the string (for a start position of 0 the function counts backward
one position from the beginning of the string).

Query 2-82
SELECT sname, SUBSTRING(sname FROM -2 FOR 4)

FROM state
WHERE code = "AZ"

Using the SUBSTR Function

The SUBSTR function serves the same purpose as the SUBSTRING function,
but the syntax of the two functions differs.

To return a portion of a character string, you specify the start position and
length (optional) to determine which portion of the character string the
SUBSTR function returns. The start position that you specify for the SUBSTR
function can be a positive or a negative number. However, the SUBSTR
function treats a negative number in the start position differently than does
the SUBSTRING function. When the start position is a negative number, the
SUBSTR function counts backward from the end of the character string, which
depends of the length of the string, not the character length of a word or
visible characters that the string contains. The SUBSTR function recognizes
zero (0) or 1 in the start position as the first position in the string.

Query 2-83 shows an example of the SUBSTR function that includes a negative
number for the start position. Given a start position of -15, the SUBSTR
function counts backwards 15 positions from the end of the string to find the
start position and then returns the next five characters.

Query 2-83
SELECT sname, SUBSTR(sname, -15, 5)

FROM state
WHERE code = "CA"

Query Result 2-82
sname (expression)

Arizona A
2-76 Informix Guide to SQL: Tutorial

Using Functions in SELECT Statements
To use a negative number for the start position, you need to know the length
of the value that is evaluated. The sname column is defined as CHAR(15), so
a SUBSTR function that accepts an argument of type sname can use a start
position of 0, 1, or -15 for the function to return a character string beginning
from the first position in the string.

Query 2-84 returns the same result as Query 2-83

Query 2-84
SELECT sname, SUBSTR(sname, 1, 5)

FROM state
WHERE code = "CA

Using the LPAD Function

You use the LPAD function to return a copy of a string that has been left
padded with a sequence of characters that are repeated as many times as
necessary or truncated, depending on the specified length of the padded
portion of the string. You specify the source string, the length of the string to
be returned, and the character string to serve as padding.

The data type of the source string and the character string that serves as
padding can be any data type that converts to VARCHAR or NVARCHAR.

Query 2-83 shows an example of the LPAD function with a specified a length
of 21 bytes. Because the source string has a length of 15 bytes (sname is
defined as CHAR(15)) LPAD pads the first 6 positions to the left of the source
string.

Query 2-85
SELECT sname, LPAD(sname, 21, "-")

FROM state
WHERE code = "CA"

Query Result 2-83
sname (expression)

California Calif
Composing Simple SELECT Statements 2-77

Using Functions in SELECT Statements
Using the RPAD Function

You use the RPAD function to return a copy of a string that has been left
padded with a sequence of characters that are repeated as many times as
necessary or truncated, depending on the specified length of the padded
portion of the string. You specify the source string, the length of the string to
be returned, and the character string to serve as padding.

The data type of the source string and the character string that serves as
padding can be any data type that converts to VARCHAR or NVARCHAR.

Query 2-86 shows an example of the RPAD function with a specified a length
of 21 bytes. Because the source string has a length of 15 bytes (sname is
defined as CHAR(15)) the RPAD function pads the first 6 positions to the right
of the source string.

Query 2-86
SELECT sname, RPAD(sname, 21, "-")

FROM state
WHERE code = "WV"

Other Functions

You can also use the LENGTH, USER, CURRENT, and TODAY functions
anywhere in an SQL expression that you would use a constant. In addition,
you can include the DBSERVERNAME function in a SELECT statement to
display the name of the database server where the current database resides.

You can use these functions to select an expression that consists entirely of
constant values or an expression that includes column data. In the first
instance, the result is the same for all rows of output.

Query Result 2-85
sname (expression)

California ------California

Query Result 2-86
sname (expression)

West Virginia West Virginia ------
2-78 Informix Guide to SQL: Tutorial

Using Functions in SELECT Statements
In addition, you can use the HEX function to return the hexadecimal encoding
of an expression, the ROUND function to return the rounded value of an
expression, and the TRUNC function to return the truncated value of an
expression.

For more information on the preceding functions, see the Informix Guide to
SQL: Syntax.

Using the LENGTH Function

In Query 2-87, the LENGTH function calculates the number of bytes in the
combined fname and lname columns for each row where the length of
company is greater than 15.

Query 2-87
SELECT customer_num,

LENGTH (fname) + LENGTH (lname) namelength
FROM customer
WHERE LENGTH (company) > 15

Although the LENGTH function might not be useful when you work with
DB-Access or Relational Object Manager, it can be important to determine the
string length for programs and reports. LENGTH returns the clipped length
of a CHARACTER or VARCHAR string and the full number of bytes in a TEXT
or BYTE string.

Query Result 2-87
customer_num namelength

101 11
105 13
107 11
112 14
115 11
118 10
119 10
120 10
122 12
124 11
125 10
126 12
127 10
128 11
Composing Simple SELECT Statements 2-79

Using Functions in SELECT Statements
Using the USER Function

You can use the USER function when you want to define a restricted view of
a table that contains only your rows. For information about how to create
views, see the Informix Guide to Database Design and Implementation and the
GRANT and CREATE VIEW statements in the Informix Guide to SQL: Syntax.

Query 2-88a specifies the USER function and the cust_calls table.

Query 2-88a
SELECT USER FROM cust_calls

Query 2-88b returns the user name (login account name) of the user who
executes the query. It is repeated once for each row in the table.

Query 2-88b
SELECT * FROM cust_calls

WHERE user_id = USER

If the user name of the current user is richc, Query 2-88b retrieves only those
rows in the cust_calls table that are owned by that user, as Query Result 2-88
shows.

Query Result 2-88
customer_num 110
call_dtime 1998-07-07 10:24
user_id richc
call_code L
call_descr Order placed one month ago (6/7) not received.
res_dtime 1998-07-07 10:30
res_descr Checked with shipping (Ed Smith). Order sent yesterday- we

were waiting for goods from ANZ. Next time will call with
delay if necessary

customer_num 119
call_dtime 1998-07-01 15:00
user_id richc
call_code B
call_descr Bill does not reflect credit from previous order
res_dtime 1998-07-02 08:21
res_descr Spoke with Jane Akant in Finance. She found the error and is

sending new bill to customer
2-80 Informix Guide to SQL: Tutorial

Using Functions in SELECT Statements
Using the TODAY Function

The TODAY function returns the current system date. If Query 2-89 is issued
when the current system date is July 10, 1998, it returns this one row.

Query 2-89
SELECT * FROM orders

WHERE order_date = TODAY

Using the DBSERVERNAME and SITENAME Functions

You can include the function DBSERVERNAME (or its synonym, SITENAME)
in a SELECT statement to find the name of the database server. You can query
the DBSERVERNAME for any table that has rows, including system catalog
tables.

In Query 2-90, you assign the label server to the DBSERVERNAME expression
and also select the tabid column from the systables system catalog table. This
table describes database tables, and tabid is the serial-interval table identifier.

Query 2-90
SELECT DBSERVERNAME server, tabid

FROM systables
WHERE tabid <= 4

Without the WHERE clause to restrict the values in the tabid, the database
server name would be repeated for each row of the systables table.

Query Result 2-89
 order_num 1018
 order_date 07/10/1998
 customer_num 121
 ship_instruct SW corner of Biltmore Mall
 backlog n
 po_num S22942
 ship_date 07/13/1998
 ship_weight 70.50
 ship_charge $20.00
 paid_date 08/06/1998

Query Result 2-90
server tabid

 montague 1
 montague 2
 montague 3
 montague 4
Composing Simple SELECT Statements 2-81

Using Functions in SELECT Statements
Using the HEX Function

In Query 2-91, the HEX function returns the hexadecimal format of three
specified columns in the customer table.

Query 2-91
SELECT HEX (customer_num) hexnum, HEX (zipcode) hexzip,

HEX (rowid) hexrow
FROM customer

Using the DBINFO Function

You can use the DBINFO function in a SELECT statement to find any of the
following information:

■ The name of a dbspace corresponding to a tablespace number or
expression

■ The last serial value inserted in a table

■ The number of rows processed by selects, inserts, deletes, updates,
and execute procedure statements

Query Result 2-91
hexnum hexzip hexrow

0x00000065 0x00016F86 0x00000001
0x00000066 0x00016FA5 0x00000002
0x00000067 0x0001705F 0x00000003
0x00000068 0x00016F4A 0x00000004
0x00000069 0x00016F46 0x00000005
0x0000006A 0x00016F6F 0x00000006
0x0000006B 0x00017060 0x00000007
0x0000006C 0x00016F6F 0x00000008
0x0000006D 0x00016F86 0x00000009
0x0000006E 0x00016F6E 0x0000000A
0x0000006F 0x00016F85 0x0000000B
0x00000070 0x00016F46 0x0000000C
0x00000071 0x00016F49 0x0000000D
0x00000072 0x00016F6E 0x0000000E
0x00000073 0x00016F49 0x0000000F
0x00000074 0x00016F58 0x00000010
0x00000075 0x00016F6F 0x00000011
0x00000076 0x00017191 0x00000012
0x00000077 0x00001F42 0x00000013
0x00000078 0x00014C18 0x00000014
0x00000079 0x00004DBA 0x00000015
0x0000007A 0x0000215C 0x00000016
0x0000007B 0x00007E00 0x00000017
0x0000007C 0x00012116 0x00000018
0x0000007D 0x00000857 0x00000019
0x0000007E 0x0001395B 0x0000001A
0x0000007F 0x0000EBF6 0x0000001B
0x00000080 0x00014C10 0x0000001C
2-82 Informix Guide to SQL: Tutorial

Using Functions in SELECT Statements
■ The session ID of the current session

■ The name of the host computer on which the database server runs

■ The exact version of the database server to which a client application
is connected ♦

You can use the DBINFO function anywhere within SQL statements and
within stored procedures.

Query 2-92, shows how you might use the DBINFO function to find out the
name of the host computer on which the database server runs.

Query 2-92
SELECT DBINFO('dbhostname')

FROM systables
WHERE tabid = 1

Without the WHERE clause to restrict the values in the tabid, the host name
of the computer on which the database server runs would be repeated for
each row of the systables table.

Query 2-93, shows how you might use the DBINFO function to find out the
complete version number and the type of the current database server.

Query 2-93
SELECT DBINFO('version','full')

FROM systables
WHERE tabid = 1

For more information about how to use the DBINFO function to find infor-
mation about your current database server, database session, or database, see
the Informix Guide to SQL: Syntax.

Using the DECODE Function

You can use the DECODE function to convert an expression of one value to
another value. The DECODE function has the following form:

DECODE(exp_1, exp_2, exp_3, exp_4, exp_5, ..., exp_n, exp_n+1, exp_m)

IDS

Query Result 2-92
(constant)

lyceum

IDS
Composing Simple SELECT Statements 2-83

Using Functions in SELECT Statements
DECODE returns expr_3 when exp_2 equals exp_1, and returns exp_5 when
exp_4 equals exp_1, and, in general, returns exp_n+1 when exp_n equals exp_1.

If several expressions match exp_1, DECODE returns exp_n+1 for the first
expression found. If no expression matches exp_1, DECODE returns exp_m; if
no expression matches exp_1 and there is no exp_m, DECODE returns NULL.

Suppose an employee table exists that includes emp_id and evaluation
columns. Suppose also that execution of Query 2-96 on the employee table
returns the rows shown in Query Result 2-96.

Query 2-94
SELECT emp_id, evaluation

FROM employee:

In some cases, you might want to convert a set of values. For example,
suppose you want to convert the descriptive values of the evaluation column
in the preceding example to corresponding numeric values. Query 2-97
shows how you might use the DECODE function to convert values from the
evaluation column to numeric values for each row in the employee table:

Query 2-95
SELECT emp_id, DECODE(evaluation, "poor", 0 "fair", 25,
"good", 50,"very good", 75, "great", 100, -1) as evaluation

FROM employee

Query Result 2-94
emp_id evaluation

012233 great
012344 poor
012677 NULL
012288 good
012555 very good

Query Result 2-95
emp_id evaluation

012233 100
012344 0
012677 -1
012288 50
012555 75
.

2-84 Informix Guide to SQL: Tutorial

Using Functions in SELECT Statements
You can specify any data type for the arguments of the DECODE function
provided that the arguments meet the following requirements:

■ The arguments exp_1, exp_2, exp_4, ..., exp_n all have the same data
type or evaluate to a common compatible data type.

■ The arguments exp_3, exp_5,...,exp_n+1 all have the same data type or
evaluate to a common compatible data type.

Using the NVL Function

You can use the NVL function to convert an expression that evaluates to null
to a value that you specify. The NVL function accepts two arguments: the first
argument takes the name of the expression to be evaluated; the second
argument specifies the value that the function returns when the first
argument evaluates to null. If the first argument does not evaluate to null, the
function returns the value of the first argument. Suppose an student table
exists that includes name and address columns. Suppose also that execution
of Query 2-96 on the student table returns the rows shown in Query Result
2-96.

Query 2-96
SELECT name, address
FROM student:

Query 2-97 includes the NVL function, which returns a new value for each
row in the table where the address column contains a null value:

Query 2-97
SELECT name, NVL(address, "address is unknown") as address

FROM student

IDS

Query Result 2-96
name address

John Smith 333 Vista Drive
Lauren Collier 1129 Greenridge Street
Fred Frith NULL
Susan Jordan NULL
Composing Simple SELECT Statements 2-85

Using Stored Procedures in SELECT Statements
You can specify any data type for the arguments of the NVL function
provided that the two arguments evaluate to a common compatible data
type.

If both arguments of the NVL function evaluate to null, the function returns
null.

Using Stored Procedures in SELECT Statements
Previous examples in this chapter show SELECT statement expressions that
consist of column names, operators, and SQL functions. This section shows
expressions that contain a stored procedure call.

Stored procedures contain special Stored Procedure Language (SPL) state-
ments as well as SQL statements. For more information on stored procedures,
see Chapter 8, “Creating and Using Stored Procedures.”

Stored procedures provide a way to extend the range of functions available;
you can perform a subquery on each row you select.

For example, suppose you want a listing of the customer number, the
customer’s last name, and the number of orders the customer has made.
Query 2-98 shows one way to retrieve this information. The customer table
has customer_num and lname columns but no record of the number of
orders each customer has made. You could write a get_orders procedure,
which queries the orders table for each customer_num and returns the
number of corresponding orders (labeled n_orders).

Query 2-98
SELECT customer_num, lname, get_orders(customer_num) n_orders

FROM customer

Query Result 2-97
name address

John Smith 333 Vista Drive
Lauren Collier 1129 Greenridge Street
Fred Frith address is unknown
Susan Jordan address is unknown
2-86 Informix Guide to SQL: Tutorial

Using Stored Procedures in SELECT Statements
Query Result 2-98 shows the output from this stored procedure.

Use stored procedures to encapsulate operations that you frequently perform
in your queries. For example, the condition in Query 2-99 contains a
procedure, conv_price, that converts the unit price of a stock item to a
different currency and adds any import tariffs.

Query 2-99
SELECT stock_num, manu_code, description

FROM stock
WHERE conv_price(unit_price, ex_rate = 1.50,
tariff = 50.00) < 1000

Query Result 2-98
customer_num lname n_orders

 101 Pauli 1
 102 Sadler 0
 103 Currie 0
 104 Higgins 4
 105 Vector 0
 106 Watson 2
 107 Ream 0
 108 Quinn 0
 109 Miller 0
 110 Jaeger 2
 111 Keyes 1
 112 Lawson 1
 113 Beatty 0
 114 Albertson 0
 115 Grant 1
 116 Parmelee 1
 117 Sipes 2
 118 Baxter 0
 119 Shorter 1
 120 Jewell 1
 121 Wallack 1
 122 O’Brian 1
 123 Hanlon 1
 124 Putnum 1
 125 Henry 0
 126 Neelie 1
 127 Satifer 1
 128 Lessor 0
Composing Simple SELECT Statements 2-87

Multiple-Table SELECT Statements
Multiple-Table SELECT Statements
To select data from two or more tables, name these tables in the FROM clause.
Add a WHERE clause to create a join condition between at least one related
column in each table. This WHERE clause creates a temporary composite table
in which each pair of rows that satisfies the join condition is linked to form a
single row.

A simple join combines information from two or more tables based on the
relationship between one column in each table. A composite join is a join
between two or more tables based on the relationship between two or more
columns in each table.

To create a join, you must specify a relationship, called a join condition,
between at least one column from each table. Because the columns are being
compared, they must have compatible data types. When you join large tables,
performance improves when you index the columns in the join condition.

Data types are described in the Informix Guide to SQL: Reference and the
Informix Guide to Database Design and Implementation. Indexing is discussed in
detail in your Administrator’s Guide.

Creating a Cartesian Product
When you perform a multiple-table query that does not explicitly state a join
condition among the tables, you create a Cartesian product. A Cartesian
product consists of every possible combination of rows from the tables. This
result is usually large and unwieldy, and the data is inaccurate.

Query 2-100 selects from two tables and produces a Cartesian product.

Query 2-100
SELECT * FROM customer, state
2-88 Informix Guide to SQL: Tutorial

Creating a Cartesian Product
Although only 52 rows exist in the state table and 28 rows in the customer
table, the effect of Query 2-100 is to multiply the rows of one table by the rows
of the other and retrieve an impractical 1,456 rows, as Query 2-100 shows.

Some of the data that is displayed in the concatenated rows is inaccurate. For
example, although the city and state from the customer table indicate an
address in California, the code and sname from the state table might be for a
different state.

Query Result 2-100
customer_num 101
 fname Ludwig
 lname Pauli
 company All Sports Supplies
 address1 213 Erstwild Court
 address2
 city Sunnyvale
 state CA
 zipcode 94086
 phone 408-789-8075
 code AK
 sname Alaska

 customer_num 101
 fname Ludwig
 lname Pauli
 company All Sports Supplies
 address1 213 Erstwild Court
 address2
 city Sunnyvale
 state CA
 zipcode 94086
 phone 408-789-8075
 code HI
 sname Hawaii

 customer_num 101
 fname Ludwig
 lname Pauli
 company All Sports Supplies
 address1 213 Erstwild Court
 address2
 city Sunnyvale
 state CA
 zipcode 94086
 phone 408-789-8075
 code CA
 sname California
 .
 .
 .
Composing Simple SELECT Statements 2-89

Creating a Join
Creating a Join
Conceptually, the first stage of any join is the creation of a Cartesian product.
To refine or constrain this Cartesian product and eliminate meaningless rows
of data, include a WHERE clause with a valid join condition in your SELECT
statement.

This section illustrates equi-joins, natural joins, and multiple-table joins.
Additional complex forms, such as self-joins and outer joins, are discussed in
Chapter 3, “Composing Advanced SELECT Statements.”

Equi-Join

An equi-join is a join based on equality or matching values. This equality is
indicated with an equal sign (=) in the comparison operation in the WHERE
clause, as Query 2-101 shows.

Query 2-101
SELECT * FROM manufact, stock

WHERE manufact.manu_code = stock.manu_code

Query 2-101 joins the manufact and stock tables on the manu_code column.
It retrieves only those rows for which the values for the two columns are
equal, as Query Result 2-101 shows.
2-90 Informix Guide to SQL: Tutorial

Creating a Join
In this equi-join, Query Result 2-101 includes the manu_code column from
both the manufact and stock tables because the select list requested every
column.

You can also create an equi-join with additional constraints, one where the
comparison condition is based on the inequality of values in the joined
columns. These joins use a relational operator other than the equal sign (=)
in the comparison condition that is specified in the WHERE clause.

Query Result 2-101
manu_code SMT
 manu_name Smith
 lead_time 3
 stock_num 1
 manu_code SMT
 description baseball gloves
 unit_price $450.00
 unit case
 unit_descr 10 gloves/case

 manu_code SMT
 manu_name Smith
 lead_time 3
 stock_num 5
 manu_code SMT
 description tennis racquet
 unit_price $25.00
 unit each
 unit_descr each

 manu_code SMT
 manu_name Smith
 lead_time 3
 stock_num 6
 manu_code SMT
 description tennis ball
 unit_price $36.00
 unit case
 unit_descr 24 cans/case

manu_code ANZ
 manu_name Anza
 lead_time 5
 stock_num 5
 manu_code ANZ
 description tennis racquet
 unit_price $19.80
 unit each
 unit_descr each
 .
 .
 .
Composing Simple SELECT Statements 2-91

Creating a Join
To join tables that contain columns with the same name, precede each column
name with a period and its table name, as Query 2-102 shows.

Query 2-102
SELECT order_num, order_date, ship_date, cust_calls.*

FROM orders, cust_calls
WHERE call_dtime >= ship_date

AND cust_calls.customer_num = orders.customer_num
ORDER BY customer_num

Query 2-102 joins the customer_num column and then selects only those
rows where the call_dtime in the cust_calls table is greater than or equal to
the ship_date in the orders table. Query Result 2-102 shows the rows that it
returns.

Query Result 2-102
 order_num 1004
 order_date 05/22/1998
 ship_date 05/30/1998
 customer_num 106
 call_dtime 1998-06-12 08:20
 user_id maryj
 call_code D
 call_descr Order received okay, but two of the cans of

ANZ tennis balls within the case were empty
 res_dtime 1998-06-12 08:25
 res_descr Authorized credit for two cans to customer,

issued apology. Called ANZ buyer to report
the qa problem.

 order_num 1008
 order_date 06/07/1998
 ship_date 07/06/1998
 customer_num 110
 call_dtime 1998-07-07 10:24
 user_id richc
 call_code L
 call_descr Order placed one month ago (6/7) not received.
 res_dtime 1998-07-07 10:30
 res_descr Checked with shipping (Ed Smith). Order out

yesterday-was waiting for goods from ANZ.
Next time will call with delay if necessary.

 order_num 1023
 order_date 07/24/1998
 ship_date 07/30/1998
 customer_num 127
 call_dtime 1998-07-31 14:30
 user_id maryj
 call_code I
 call_descr Received Hero watches (item # 304) instead

of ANZ watches
 res_dtime
 res_descr Sent memo to shipping to send ANZ item 304

to customer and pickup HRO watches. Should
be done tomorrow, 8/1
2-92 Informix Guide to SQL: Tutorial

Creating a Join
Natural Join

A natural join is structured so that the join column does not display data
redundantly, as Query 2-103 shows.

Query 2-103
SELECT manu_name, lead_time, stock.*

FROM manufact, stock
WHERE manufact.manu_code = stock.manu_code

Like the example for equi-join, Query 2-103 joins the manufact and stock
tables on the manu_code column. Because the select list is more closely
defined, the manu_code is listed only once for each row retrieved, as Query
Result 2-103 shows.

Query Result 2-103
 manu_name Smith
 lead_time 3
 stock_num 1
 manu_code SMT
 description baseball gloves
 unit_price $450.00
 unit case
 unit_descr 10 gloves/case

 manu_name Smith
 lead_time 3
 stock_num 5
 manu_code SMT
 description tennis racquet
 unit_price $25.00
 unit each
 unit_descr each

 manu_name Smith
 lead_time 3
 stock_num 6
 manu_code SMT
 description tennis ball
 unit_price $36.00
 unit case
 unit_descr 24 cans/case

 manu_name Anza
 lead_time 5
 stock_num 5
 manu_code ANZ
 description tennis racquet
 unit_price $19.80
 unit each
 unit_descr each
 .
 .
 .
Composing Simple SELECT Statements 2-93

Creating a Join
All joins are associative; that is, the order of the joining terms in the WHERE
clause does not affect the meaning of the join.

Both of the statements in Query 2-104 create the same natural join.

Query 2-104
SELECT catalog.*, description, unit_price, unit, unit_descr

FROM catalog, stock
WHERE catalog.stock_num = stock.stock_num

AND catalog.manu_code = stock.manu_code
AND catalog_num = 10017

SELECT catalog.*, description, unit_price, unit, unit_descr
FROM catalog, stock
WHERE catalog_num = 10017

AND catalog.manu_code = stock.manu_code
AND catalog.stock_num = stock.stock_num

Each statement retrieves the row that Query Result 2-104 shows.

Query 2-104 includes a TEXT column, cat_descr; a BYTE column, cat_picture;
and a VARCHAR column, cat_advert.

Query Result 2-104
 catalog_num 10017
 stock_num 101
 manu_code PRC
 cat_descr
 Reinforced, hand-finished tubular. Polyurethane belted.
 Effective against punctures. Mixed tread for super wear
 and road grip.
 cat_picture <BYTE value>

 cat_advert Ultimate in Puncture Protection, Tires
Designed for In-City Riding

 description bicycle tires
 unit_price $88.00
 unit box
 unit_descr 4/box
2-94 Informix Guide to SQL: Tutorial

Creating a Join
Multiple-Table Join

A multiple-table join connects more than two tables on one or more
associated columns; it can be an equi-join or a natural join.

Query 2-105 creates an equi-join on the catalog, stock, and manufact tables
and retrieves the following row:

Query 2-105
SELECT * FROM catalog, stock, manufact

WHERE catalog.stock_num = stock.stock_num
AND stock.manu_code = manufact.manu_code
AND catalog_num = 10025

Query 2-105 retrieves the rows that Query Result 2-105 shows.

The manu_code is repeated three times, once for each table, and stock_num
is repeated twice.

To avoid the considerable duplication of a multiple-table query such as
Query 2-105, include specific columns in the select list to define the SELECT
statement more closely, as Query 2-106 shows.

Query 2-106
SELECT catalog.*, description, unit_price, unit,

unit_descr, manu_name, lead_time
FROM catalog, stock, manufact
WHERE catalog.stock_num = stock.stock_num

AND stock.manu_code = manufact.manu_code
AND catalog_num = 10025

Query Result 2-105
 catalog_num 10025
 stock_num 106
 manu_code PRC
 cat_descr
 Hard anodized alloy with pearl finish; 6mm hex bolt hardware.
 Available in lengths of 90-140mm in 10mm increments.
 cat_picture <BYTE value>

 cat_advert ProCycle Stem with Pearl Finish
 stock_num 106
 manu_code PRC
 description bicycle stem
 unit_price $23.00
 unit each
 unit_descr each
 manu_code PRC
 manu_name ProCycle
 lead_time 9
Composing Simple SELECT Statements 2-95

Some Query Shortcuts
Query 2-106 uses a wildcard to select all columns from the table with the
most columns and then specifies columns from the other two tables. Query
Result 2-106 shows the natural join that Query 2-106 produces. It displays the
same information as the previous example, but without duplication.

Some Query Shortcuts
You can use aliases, the INTO TEMP clause, and display labels to speed your
way through joins and multiple-table queries and to produce output for
other uses.

Using Aliases

You can assign aliases to the tables in a SELECT statement to make multiple-
table queries shorter and more readable. An alias is a word that immediately
follows the name of a table in the FROM clause. You can use it wherever the
table name would be used, for instance, as a prefix to the column names in
the other clauses.

Query 2-107a
SELECT s.stock_num, s.manu_code, s.description,

s.unit_price, s.unit, c.catalog_num,
c.cat_descr, c.cat_advert, m.lead_time

FROM stock s, catalog c, manufact m
WHERE s.stock_num = c.stock_num

AND s.manu_code = c.manu_code
AND s.manu_code = m.manu_code
AND s.manu_code IN ('HRO', 'HSK')
AND s.stock_num BETWEEN 100 AND 301

ORDER BY catalog_num

Query Result 2-106
 catalog_num 10025
 stock_num 106
 manu_code PRC
 cat_descr
 Hard anodized alloy with pearl finish. 6mm hex bolt hardware.
 Available in lengths of 90-140mm in 10mm increments.
 cat_picture <BYTE value>

 cat_advert ProCycle Stem with Pearl Finish
 description bicycle stem
 unit_price $23.00
 unit each
 unit_descr each
 manu_name ProCycle
 lead_time 9
2-96 Informix Guide to SQL: Tutorial

Some Query Shortcuts
The associative nature of the SELECT statement allows you to use an alias
before you define it. In Query 2-107a, the aliases s for the stock table, c for the
catalog table, and m for the manufact table are specified in the FROM clause
and used throughout the SELECT and WHERE clauses as column prefixes.

Compare the length of Query 2-107a with Query 2-107b, which does not use
aliases.

Query 2-107b
SELECT stock.stock_num, stock.manu_code, stock.description,

 stock.unit_price, stock.unit, catalog.catalog_num,
 catalog.cat_descr, catalog.cat_advert,
 manufact.lead_time

FROM stock, catalog, manufact
WHERE stock.stock_num = catalog.stock_num

AND stock.manu_code = catalog.manu_code
AND stock.manu_code = manufact.manu_code
AND stock.manu_code IN ('HRO', 'HSK')
AND stock.stock_num BETWEEN 100 AND 301

ORDER BY catalog_num
Composing Simple SELECT Statements 2-97

Some Query Shortcuts
Query 2-107a and Query 2-107b are equivalent and retrieve the data in Query
Result 2-107.

Query Result 2-107
 stock_num 110
 manu_code HRO
 description helmet
 unit_price $260.00
 unit case
 catalog_num 10033
 cat_descr
 Newest ultralight helmet uses plastic shell. Largest ventilation
 channels of any helmet on the market. 8.5 oz.
 cat_advert Lightweight Plastic Slatted with Vents Assures Cool

Comfort Without Sacrificing Protection
 lead_time 4

 stock_num 110
 manu_code HSK
 description helmet
 unit_price $308.00
 unit each
 catalog_num 10034
 cat_descr
 Aerodynamic (teardrop) helmet covered with anti-drag fabric.
Credited with shaving 2 seconds/mile from winner’s time in
 Tour de France time-trial. 7.5 oz.
 cat_advert Teardrop Design Endorsed by Yellow Jerseys,

You Can Time the Difference
 lead_time 5

 stock_num 205
 manu_code HRO
 description 3 golf balls
 unit_price $312.00
 unit each
 catalog_num 10048
 cat_descr
 Combination fluorescent yellow and standard white.
 cat_advert HiFlier Golf Balls: Case Includes Fluorescent

Yellow and Standard White
 lead_time 4

 stock_num 301
 manu_code HRO
 description running shoes
 unit_price $42.50
 unit each
 catalog_num 10050
 cat_descr
 Engineered for serious training with exceptional stability.
 Fabulous shock absorption. Great durability. Specify
mens/womens, size.
 cat_advert Pronators and Supinators Take Heart: A Serious

Training Shoe For Runners Who Need Motion Control
 lead_time 4
2-98 Informix Guide to SQL: Tutorial

Some Query Shortcuts
You cannot use the ORDER BY clause for the TEXT column cat_descr or the
BYTE column cat_picture.

You can also use aliases to shorten your queries on tables that are not in the
current database.

Query 2-108 joins columns from two tables that reside in different databases
and systems, neither of which is the current database or system.

Query 2-108
SELECT order_num, lname, fname, phone
FROM masterdb@central:customer c, sales@western:orders o

WHERE c.customer_num = o.customer_num
AND order_num <= 1010

By assigning the aliases c and o to the long database@system:table names,
masterdb@central:customer and sales@western:orders, respectively, you
can use the aliases to shorten the expression in the WHERE clause and retrieve
the data as Query Result 2-108 shows.

For more information on how to access tables that are not in the current
database, see “Selecting Tables from a Database Other Than the Current
Database” on page 2-101 in this manual and the Informix Guide to SQL:
Syntax.

You also can use synonyms as shorthand references to the long names of tables
that are not in the current database as well as current tables and views. For
details on how to create and use synonyms, see the Informix Guide to Database
Design and Implementation.

Query Result 2-108
order_num lname fname phone

1001 Higgins Anthony 415-368-1100
1002 Pauli Ludwig 408-789-8075
1003 Higgins Anthony 415-368-1100
1004 Watson George 415-389-8789
1005 Parmelee Jean 415-534-8822
1006 Lawson Margaret 415-887-7235
1007 Sipes Arnold 415-245-4578
1008 Jaeger Roy 415-743-3611
1009 Keyes Frances 408-277-7245
1010 Grant Alfred 415-356-1123
Composing Simple SELECT Statements 2-99

Some Query Shortcuts
The INTO TEMP Clause

By adding an INTO TEMP clause to your SELECT statement, you can
temporarily save the results of a multiple-table query in a separate table that
you can query or manipulate without modifying the database. Temporary
tables are dropped when you end your SQL session or when your program or
report terminates.

Query 2-109 creates a temporary table called stockman and stores the results
of the query in it. Because all columns in a temporary table must have names,
the alias adj_price is required.

Query 2-109
SELECT DISTINCT stock_num, manu_name, description,

unit_price, unit_price * 1.05 adj_price
FROM stock, manufact
WHERE manufact.manu_code = stock.manu_code
INTO TEMP stockman

You can query on this table and join it with other tables, which avoids a
multiple sort and lets you move more quickly through the database. For more
information on temporary tables, see your Administrator’s Guide.

Query Result 2-109
stock_num manu_name description unit_price adj_price

1 Hero baseball gloves $250.00 $262.5000
1 Husky baseball gloves $800.00 $840.0000
1 Smith baseball gloves $450.00 $472.5000
2 Hero baseball $126.00 $132.3000
3 Husky baseball bat $240.00 $252.0000
4 Hero football $480.00 $504.0000
4 Husky football $960.00 $1008.0000
.
.
.

306 Shimara tandem adapter $190.00 $199.5000
307 ProCycle infant jogger $250.00 $262.5000
308 ProCycle twin jogger $280.00 $294.0000
309 Hero ear drops $40.00 $42.0000
309 Shimara ear drops $40.00 $42.0000
310 Anza kick board $84.00 $88.2000
310 Shimara kick board $80.00 $84.0000
311 Shimara water gloves $48.00 $50.4000
312 Hero racer goggles $72.00 $75.6000
312 Shimara racer goggles $96.00 $100.8000
313 Anza swim cap $60.00 $63.0000
313 Shimara swim cap $72.00 $75.6000
2-100 Informix Guide to SQL: Tutorial

Selecting Tables from a Database Other Than the Current Database
Selecting Tables from a Database Other Than the
Current Database
The database that a CONNECT, DATABASE or CREATE DATABASE statement
opens is the current database. To refer to a table in a database other than the
current database, include the database name as part of the table name, as the
following SELECT statement illustrates:

SELECT name, number FROM salesdb:contacts

The database is salesdb. The table in salesdb is named contacts. You can use
the same notation in a join. When you must specify the database name
explicitly, the long table names can become cumbersome unless you use
aliases to shorten them, as the following example shows:

SELECT C.custname, S.phone
FROM salesdb:contacts C, stores:customer S
WHERE C.custname = S.company

You must qualify the database name with a database server name to specify a
table in a database that a different database server manages. For example, the
following SELECT statement refers to table customer from database
masterdb, which resides on the database server central:

SELECT O.order_num, C.fname, C.lname
FROM masterdb@central:customer C, sales@boston:orders O
WHERE C.customer_num = O.Customer_num
INTO TEMP mycopy

In the example, two tables are being joined. The joined rows are stored in a
temporary table called mycopy in the current database. The tables are located
in two database servers, central and boston.

Informix allows you to over qualify table names (to give more information
than is required). Because both table names are fully qualified, you cannot tell
whether the current database is masterdb or sales.
Composing Simple SELECT Statements 2-101

Summary
Summary
This chapter introduced sample syntax and results for basic kinds of SELECT
statements that are used to query on a relational database. The section
“Single-Table SELECT Statements” on page 2-11 shows how to perform the
following actions:

■ Select all columns and rows from a table with the SELECT and FROM
clauses

■ Select specific columns from a table with the SELECT and FROM
clauses

■ Select specific rows from a table with the SELECT, FROM, and WHERE
clauses

■ Use the DISTINCT or UNIQUE keyword in the SELECT clause to
eliminate duplicate rows from query results

■ Sort retrieved data with the ORDER BY clause and the DESC keyword

■ Select and order data that contains non-English characters

■ Use the BETWEEN, IN, MATCHES, and LIKE keywords and various
relational operators in the WHERE clause to create a comparison
condition

■ Create comparison conditions that include values, exclude values,
find a range of values (with keywords, relational operators, and
subscripting), and find a subset of values

■ Use exact-text comparisons, variable-length wildcards, and
restricted and unrestricted wildcards to perform variable text
searches

■ Use the logical operators AND, OR, and NOT to connect search
conditions or Boolean expressions in a WHERE clause

■ Use the ESCAPE keyword to protect special characters in a query

■ Search for null values with the IS NULL and IS NOT NULL keywords
in the WHERE clause

■ Use the FIRST clause to specify that a query returns only a specified
number of the rows that match the conditions of the SELECT
statement

■ Use arithmetic operators in the SELECT clause to perform
computations on number fields and display derived data
2-102 Informix Guide to SQL: Tutorial

Summary
■ Use substrings and subscripting to tailor your queries

■ Assign display labels to computed columns as a formatting tool for
reports

■ Use the aggregate functions in the SELECT clause to calculate and
retrieve specific data

■ Include the time functions DATE, DAY, MDY, MONTH, WEEKDAY,
YEAR, CURRENT, and EXTEND plus the TODAY, LENGTH, and USER
functions in your SELECT statements

■ Use conversion functions in the SELECT clause to convert between
date and character values

■ Use string manipulation functions in the SELECT clause to convert
between upper and lower case letters or to manipulate character
strings in various ways

■ Include stored procedures in your SELECT statements

This chapter also introduced simple join conditions that enable you to select
and display data from two or more tables. The section “Multiple-Table
SELECT Statements” on page 2-88 describes how to perform the following
actions:

■ Create a Cartesian product

■ Include a WHERE clause with a valid join condition in your query to
constrain a Cartesian product

■ Define and create a natural join and an equi-join

■ Join two or more tables on one or more columns

■ Use aliases as a shortcut in multiple-table queries

■ Retrieve selected data into a separate, temporary table with the INTO
TEMP clause to perform computations outside the database

The next chapter explains more complex queries and subqueries; self-joins
and outer joins; the GROUP BY and HAVING clauses; and the UNION,
INTERSECTION, and DIFFERENCE set operations.
Composing Simple SELECT Statements 2-103

3
Chapter
Composing Advanced SELECT
Statements
Using the GROUP BY and HAVING Clauses 3-4
Using the GROUP BY Clause 3-4
Using the HAVING Clause 3-8

Creating Advanced Joins 3-10
Self-Joins . 3-11

Using Rowid Values 3-15
Outer Joins . 3-20

Simple Join 3-21
Simple Outer Join on Two Tables 3-23
Outer Join for a Simple Join to a Third Table 3-25
Outer Join of Two Tables to a Third Table 3-26
Joins That Combine Outer Joins 3-28

Subqueries in SELECT Statements 3-30
Using ALL . 3-31
Using ANY . 3-32
Single-Valued Subqueries 3-33
Correlated Subqueries 3-35
Using EXISTS 3-36

Set Operations . 3-39
Union . 3-40
Intersection . 3-48
Difference. 3-50

Summary . 3-52

3-2 Infor
mix Guide to SQL: Tutorial

The previous chapter, “Composing Simple SELECT Statements,”
demonstrates some basic ways to retrieve data from a relational database
with the SELECT statement. This chapter increases the scope of what you can
do with this powerful SQL statement and enables you to perform more
complex database queries and data manipulation.

Whereas the previous chapter focused on five of the clauses in SELECT
statement syntax, this chapter adds two more. You can use the GROUP BY
clause with aggregate functions to organize rows returned by the FROM
clause. You can include a HAVING clause to place conditions on the values
that the GROUP BY clause returns.

This chapter also extends the earlier discussion of joins. It illustrates self-joins,
which enable you to join a table to itself, and four kinds of outer joins, in which
you apply the keyword OUTER to treat two or more joined tables unequally.
It also introduces correlated and uncorrelated subqueries and their opera-
tional keywords, shows how to combine queries with the UNION operator,
and defines the set operations known as union, intersection, and difference.

Examples in this chapter show how to use some or all of the SELECT
statement clauses in your queries. The clauses must appear in the following
order:

1. SELECT

2. FROM

3. WHERE

4. GROUP BY

5. HAVING

6. ORDER BY

7. INTO TEMP

For an example of a SELECT statement that uses all these clauses in the correct
order, see Query 3-8 on page 3-10.
Composing Advanced SELECT Statements 3-3

Using the GROUP BY and HAVING Clauses
An additional SELECT statement clause, INTO, which you can use to specify
program and host variables in SQL APIs, is described in Chapter 5,
“Programming with SQL,” as well as in the manuals that come with the
product.

Using the GROUP BY and HAVING Clauses
The optional GROUP BY and HAVING clauses add functionality to your
SELECT statement. You can include one or both in a basic SELECT statement
to increase your ability to manipulate aggregates.

The GROUP BY clause combines similar rows, producing a single result row
for each group of rows that have the same values for each column listed in the
select list. The HAVING clause sets conditions on those groups after you form
them. You can use a GROUP BY clause without a HAVING clause, or a HAVING
clause without a GROUP BY clause.

Using the GROUP BY Clause
The GROUP BY clause divides a table into sets. This clause is most often
combined with aggregate functions that produce summary values for each of
those sets. Some examples in Chapter 2, “Composing Simple SELECT State-
ments” show the use of aggregate functions applied to a whole table. This
chapter illustrates aggregate functions applied to groups of rows.

Using the GROUP BY clause without aggregates is much like using the
DISTINCT (or UNIQUE) keyword in the SELECT clause. Chapter 2,
“Composing Simple SELECT Statements,” included the statement found in
Query 3-1a.

Query 3-1a

SELECT DISTINCT customer_num FROM orders

You could also write the statement as Query 3-1b shows.

Query 3-1b
SELECT customer_num

FROM orders
GROUP BY customer_num
3-4 Informix Guide to SQL: Tutorial

Using the GROUP BY Clause
Query 3-1a and Query 3-1b return the rows that Query Result 3-1 shows.

The GROUP BY clause collects the rows into sets so that each row in each set
has equal customer numbers. With no other columns selected, the result is a
list of the unique customer_num values.

The power of the GROUP BY clause is more apparent when you use it with
aggregate functions.

Query 3-2 retrieves the number of items and the total price of all items for
each order.

Query 3-2
SELECT order_num, COUNT (*) number, SUM (total_price) price

FROM items
GROUP BY order_num

The GROUP BY clause causes the rows of the items table to be collected into
groups, each group composed of rows that have identical order_num values
(that is, the items of each order are grouped together). After you form the
groups, the aggregate functions COUNT and SUM are applied within each
group.

Query Result 3-1

customer_num

101
104
106
110
111
112
115
116
117
119
120
121
122
123
124
126
127
Composing Advanced SELECT Statements 3-5

Using the GROUP BY Clause
Query 3-2 returns one row for each group. It uses labels to give names to the
results of the COUNT and SUM expressions, as Query Result 3-2 shows.

Query Result 3-2 collects the rows of the items table into groups that have
identical order numbers and computes the COUNT of rows in each group and
the sum of the prices.

You cannot include a TEXT or BYTE column in a GROUP BY clause. To group,
you must be able to sort, and no natural sort order exists for TEXT or BYTE
data.

Unlike the ORDER BY clause, the GROUP BY clause does not order data.
Include an ORDER BY clause after your GROUP BY clause if you want to sort
data in a particular order or sort on an aggregate in the select list.

Query 3-3 is the same as Query 3-2 but includes an ORDER BY clause to sort
the retrieved rows in ascending order of price, as Query Result 3-3 shows.

Query 3-3
SELECT order_num, COUNT(*) number, SUM (total_price) price

FROM items
GROUP BY order_num
ORDER BY price

Query Result 3-2

order_num number price

1001 1 $250.00
1002 2 $1200.00
1003 3 $959.00
1004 4 $1416.00
1005 4 $562.00
1006 5 $448.00
1007 5 $1696.00
1008 2 $940.00

 .
 .
 .
1015 1 $450.00
1016 4 $654.00
1017 3 $584.00
1018 5 $1131.00
1019 1 $1499.97
1020 2 $438.00
1021 4 $1614.00
1022 3 $232.00
1023 6 $824.00
3-6 Informix Guide to SQL: Tutorial

Using the GROUP BY Clause
As stated in Chapter 2, “Composing Simple SELECT Statements,” you can
use an integer in an ORDER BY clause to indicate the position of a column in
the select list. You also can use an integer in a GROUP BY clause to indicate the
position of column names or display labels in the group list.

Query 3-4 returns the same rows as Query 3-3, as Query Result 3-3 shows.

Query 3-4
SELECT order_num, COUNT(*) number, SUM (total_price) price

FROM items
GROUP BY 1
ORDER BY 3

When you build a query, remember that all nonaggregate columns that are in
the select list in the SELECT clause must also be included in the group list in
the GROUP BY clause. The reason is that a SELECT statement with a GROUP
BY clause must return only one row per group. Columns that are listed after
GROUP BY are certain to reflect only one distinct value within a group, and
that value can be returned. However, a column not listed after GROUP BY
might contain different values in the rows that are contained in a group.

Query Result 3-3
order_num number price

1010 2 $84.00
1011 1 $99.00
1013 4 $143.80
1022 3 $232.00
1001 1 $250.00
1020 2 $438.00
1006 5 $448.00
1015 1 $450.00
1009 1 $450.00

 .
 .
 .
1018 5 $1131.00
1002 2 $1200.00
1004 4 $1416.00
1014 2 $1440.00
1019 1 $1499.97
1021 4 $1614.00
1007 5 $1696.00
Composing Advanced SELECT Statements 3-7

Using the HAVING Clause
As Query 3-5 shows, you can use the GROUP BY clause in a SELECT statement
that joins tables.

Query 3-5
SELECT o.order_num, SUM (i.total_price)

FROM orders o, items i
WHERE o.order_date > '01/01/93'

AND o.customer_num = 110
AND o.order_num = i.order_num

GROUP BY o.order_num

Query 3-5 joins the orders and items tables, assigns table aliases to them, and
returns the rows that Query Result 3-5 shows.

Using the HAVING Clause
To complement a GROUP BY clause, use a HAVING clause to apply one or
more qualifying conditions to groups after they are formed. The effect of the
HAVING clause on groups is similar to the way the WHERE clause qualifies
individual rows. One advantage of using a HAVING clause is that you can
include aggregates in the search condition, whereas you cannot include
aggregates in the search condition of a WHERE clause.

Each HAVING condition compares one column or aggregate expression of the
group with another aggregate expression of the group or with a constant. You
can use HAVING to place conditions on both column values and aggregate
values in the group list.

Query 3-6 returns the average total price per item on all orders that have
more than two items. The HAVING clause tests each group as it is formed and
selects those that are composed of more than two rows.

Query 3-6
SELECT order_num, COUNT(*) number, AVG (total_price) average

FROM items
GROUP BY order_num
HAVING COUNT(*) > 2

Query Result 3-5
order_num (sum)

1008 $940.00
1015 $450.00
3-8 Informix Guide to SQL: Tutorial

Using the HAVING Clause
If you use a HAVING clause without a GROUP BY clause, the HAVING
condition applies to all rows that satisfy the search condition. In other words,
all rows that satisfy the search condition make up a single group.

Query 3-7, a modified version of Query 3-6, returns just one row, the average
of all total_price values in the table.

Query 3-7
SELECT AVG (total_price) average

FROM items
HAVING count(*) > 2

If Query 3-7, like Query 3-6, had included the nonaggregate column
order_ num in the select list, you would have to include a GROUP BY clause
with that column in the group list. In addition, if the condition in the HAVING
clause was not satisfied, the output would show the column heading and a
message would indicate that no rows were found.

Query Result 3-6
order_num number average

1003 3 $319.67
1004 4 $354.00
1005 4 $140.50
1006 5 $89.60
1007 5 $339.20
1013 4 $35.95
1016 4 $163.50
1017 3 $194.67
1018 5 $226.20
1021 4 $403.50
1022 3 $77.33
1023 6 $137.33

Query Result 3-7
average

$270.97
Composing Advanced SELECT Statements 3-9

Creating Advanced Joins
Query 3-8 contains all the SELECT statement clauses that you can use in the
Informix version of interactive SQL (the INTO clause that names host
variables is available only in an SQL API).

Query 3-8
SELECT o.order_num, SUM (i.total_price) price,

paid_date - order_date span
FROM orders o, items i
WHERE o.order_date > '01/01/93'

AND o.customer_num > 110
AND o.order_num = i.order_num

GROUP BY 1, 3
HAVING COUNT (*) < 5
ORDER BY 3
INTO TEMP temptab1

Query 3-8 joins the orders and items tables; employs display labels, table
aliases, and integers that are used as column indicators; groups and orders
the data; and puts the following results in a temporary table, as Query Result
3-8 shows.

Creating Advanced Joins
Chapter 2, “Composing Simple SELECT Statements,” shows how to include
a WHERE clause in a SELECT statement to join two or more tables on one or
more columns. It illustrates natural joins and equi-joins.

This chapter discusses how to use two more complex kinds of joins, self-joins
and outer joins. As described for simple joins, you can define aliases for
tables and assign display labels to expressions to shorten your multiple-table
queries. You can also issue a SELECT statement with an ORDER BY clause that
sorts data into a temporary table.

Query Result 3-8
order_num price span

1017 $584.00
1016 $654.00
1012 $1040.00
1019 $1499.97 26
1005 $562.00 28
1021 $1614.00 30
1022 $232.00 40
1010 $84.00 66
1009 $450.00 68
1020 $438.00 71
3-10 Informix Guide to SQL: Tutorial

Self-Joins
Self-Joins
A join does not always have to involve two different tables. You can join a
table to itself, creating a self-join. Joining a table to itself can be useful when
you want to compare values in a column to other values in the same column.

To create a self-join, list a table twice in the FROM clause, and assign it a
different alias each time. Use the aliases to refer to the table in the SELECT and
WHERE clauses as if it were two separate tables. (Aliases in SELECT state-
ments are shown in Chapter 2, “Composing Simple SELECT Statements,” of
this manual and discussed in the Informix Guide to SQL: Syntax.)

Just as in joins between tables, you can use arithmetic expressions in
self-joins. You can test for null values, and you can use an ORDER BY clause
to sort the values in a specified column in ascending or descending order.

Query 3-9 finds pairs of orders where the ship_weight differs by a factor of
five or more and the ship_date is not null. The query then orders the data by
ship_date.

Query 3-9
SELECT x.order_num, x.ship_weight, x.ship_date,

y.order_num, y.ship_weight, y.ship_date
FROM orders x, orders y
WHERE x.ship_weight >= 5 * y.ship_weight

AND x.ship_date IS NOT NULL
AND y.ship_date IS NOT NULL

ORDER BY x.ship_date

Query Result 3-9
order_num ship_weight ship_date order_num ship_weight ship_date

1004 95.80 05/30/1998 1011 10.40 07/03/1998
1004 95.80 05/30/1998 1020 14.00 07/16/1998
1004 95.80 05/30/1998 1022 15.00 07/30/1998
1007 125.90 06/05/1998 1015 20.60 07/16/1998
1007 125.90 06/05/1998 1020 14.00 07/16/1998
1007 125.90 06/05/1998 1022 15.00 07/30/1998
1007 125.90 06/05/1998 1011 10.40 07/03/1998
1007 125.90 06/05/1998 1001 20.40 06/01/1998
1007 125.90 06/05/1998 1009 20.40 06/21/1998
1005 80.80 06/09/1998 1011 10.40 07/03/1998
1005 80.80 06/09/1998 1020 14.00 07/16/1998
1005 80.80 06/09/1998 1022 15.00 07/30/1998
1012 70.80 06/29/1998 1011 10.40 07/03/1998
1012 70.80 06/29/1998 1020 14.00 07/16/1998
1013 60.80 07/10/1998 1011 10.40 07/03/1998
1017 60.00 07/13/1998 1011 10.40 07/03/1998
1018 70.50 07/13/1998 1011 10.40 07/03/1998
.

Composing Advanced SELECT Statements 3-11

Self-Joins
If you want to store the results of a self-join into a temporary table, append
an INTO TEMP clause to the SELECT statement and assign display labels to at
least one set of columns to rename them. Otherwise, the duplicate column
names cause an error and the temporary table is not created.

Query 3-10, which is similar to Query 3-9, labels all columns selected from the
orders table and puts them in a temporary table called shipping.

Query 3-10
SELECT x.order_num orders1, x.po_num purch1,

x.ship_date ship1, y.order_num orders2,
y.po_num purch2, y.ship_date ship2

FROM orders x, orders y
WHERE x.ship_weight >= 5 * y.ship_weight

AND x.ship_date IS NOT NULL
AND y.ship_date IS NOT NULL

ORDER BY orders1, orders2
INTO TEMP shipping

If you query with SELECT * from that table, you see the rows that Query
Result 3-10 shows.

You can join a table to itself more than once. The maximum number of
self-joins depends on the resources available to you.

Query Result 3-10
orders1 purch1 ship1 orders2 purch2 ship2

1004 8006 05/30/1998 1011 B77897 07/03/1998
1004 8006 05/30/1998 1020 W2286 07/16/1998
1004 8006 05/30/1998 1022 W9925 07/30/1998
1005 2865 06/09/1998 1011 B77897 07/03/1998
1005 2865 06/09/1998 1020 W2286 07/16/1998
1005 2865 06/09/1998 1022 W9925 07/30/1998
1007 278693 06/05/1998 1001 B77836 06/01/1998
1007 278693 06/05/1998 1009 4745 06/21/1998
1007 278693 06/05/1998 1011 B77897 07/03/1998
1007 278693 06/05/1998 1015 MA003 07/16/1998
1007 278693 06/05/1998 1020 W2286 07/16/1998
1007 278693 06/05/1998 1022 W9925 07/30/1998
1012 278701 06/29/1998 1011 B77897 07/03/1998
1012 278701 06/29/1998 1020 W2286 07/16/1998
1013 B77930 07/10/1998 1011 B77897 07/03/1998
1017 DM354331 07/13/1998 1011 B77897 07/03/1998
1018 S22942 07/13/1998 1011 B77897 07/03/1998
1018 S22942 07/13/1998 1020 W2286 07/16/1998
1019 Z55709 07/16/1998 1011 B77897 07/03/1998
1019 Z55709 07/16/1998 1020 W2286 07/16/1998
1019 Z55709 07/16/1998 1022 W9925 07/30/1998
1023 KF2961 07/30/1998 1011 B77897 07/03/1998
3-12 Informix Guide to SQL: Tutorial

Self-Joins
The self-join in Query 3-11 creates a list of those items in the stock table that
are supplied by three manufacturers. The self-join includes the last two
conditions in the WHERE clause to eliminate duplicate manufacturer codes in
rows that are retrieved.

Query 3-11
SELECT s1.manu_code, s2.manu_code, s3.manu_code,

s1.stock_num, s1.description
FROM stock s1, stock s2, stock s3
WHERE s1.stock_num = s2.stock_num

AND s2.stock_num = s3.stock_num
AND s1.manu_code < s2.manu_code
AND s2.manu_code < s3.manu_code

ORDER BY stock_num

Query Result 3-11

manu_code manu_code manu_code stock_num description

HRO HSK SMT 1 baseball gloves
ANZ NRG SMT 5 tennis racquet
ANZ HRO HSK 110 helmet
ANZ HRO PRC 110 helmet
ANZ HRO SHM 110 helmet
ANZ HSK PRC 110 helmet
ANZ HSK SHM 110 helmet
ANZ PRC SHM 110 helmet
HRO HSK PRC 110 helmet
HRO HSK SHM 110 helmet
HRO PRC SHM 110 helmet
HSK PRC SHM 110 helmet
ANZ KAR NKL 201 golf shoes
ANZ HRO NKL 205 3 golf balls
ANZ HRO KAR 301 running shoes
 .
 .
 .
HRO PRC SHM 301 running shoes
KAR NKL PRC 301 running shoes
KAR NKL SHM 301 running shoes
KAR PRC SHM 301 running shoes
NKL PRC SHM 301 running shoes
Composing Advanced SELECT Statements 3-13

Self-Joins
If you want to select rows from a payroll table to determine which employees
earn more than their manager, you can construct the self-join that Query
3-12a shows.

Query 3-12a

SELECT emp.employee_num, emp.gross_pay, emp.level,
emp.dept_num, mgr.employee_num, mgr.gross_pay,
mgr.dept_num, mgr.level

FROM payroll emp, payroll mgr
WHERE emp.gross_pay > mgr.gross_pay

AND emp.level < mgr.level
AND emp.dept_num = mgr.dept_num

ORDER BY 4

Query 3-12b uses a correlated subquery to retrieve and list the 10 highest-
priced items ordered.

Query 3-12b
SELECT order_num, total_price

FROM items a
WHERE 10 >

(SELECT COUNT (*)
FROM items b
WHERE b.total_price < a.total_price)

ORDER BY total_price

Query 3-12b returns the 10 rows that Query Result 3-12 shows.

You can create a similar query to find and list the 10 employees in the
company who have the most seniority.

Correlated and uncorrelated subqueries are described later in “Subqueries in
SELECT Statements” on page 3-30.

Query Result 3-12
order_num total_price

1018 $15.00
1013 $19.80
1003 $20.00
1005 $36.00
1006 $36.00
1013 $36.00
1010 $36.00
1013 $40.00
1022 $40.00
1023 $40.00
3-14 Informix Guide to SQL: Tutorial

Self-Joins
Using Rowid Values

The database server assigns a unique rowid to rows in nonfragmented tables.
Rows in fragmented tables do not contain the rowid column. For a
fragmented table, you can use the WITH ROWIDS clause to add the rowid
column to the table.

Informix recommends that you use primary keys as a method of access in
your applications rather than rowids. Because primary keys are defined in
the ANSI specification of SQL, using them to access data makes your applica-
tions more portable. In addition, the database server requires less time to
access data in a fragmented table when it uses a primary key than it requires
to access the same data when it uses rowid.

Informix Dynamic Server with Advanced Decision Support and Extended
Parallel Options does not support rowids for fragmented tables, so you must
use column values to identify the rows of a fragmented table. ♦

For more information about rowids and tables, see the Informix Guide to
Database Design and Implementation.

You can use the hidden rowid column in a self-join to locate duplicate values
in a table. In the following example, the condition x.rowid != y.rowid is
equivalent to saying “row x is not the same row as row y.”

Query 3-13 selects data twice from the cust_calls table, assigning it the table
aliases x and y.

Query 3-13
SELECT x.rowid, x.customer_num

FROM cust_calls x, cust_calls y
WHERE x.customer_num = y.customer_num

AND x.rowid != y.rowid

Query 3-13 searches for duplicate values in the customer_num column, and
for their rowids, finding the pair that Query Result 3-13 shows.

AD/XP

Query Result 3-13
rowid customer_num

515 116
769 116
Composing Advanced SELECT Statements 3-15

Self-Joins
You can write the last condition as Query 3-13 shows.

AND x.rowid != y.rowid

AND NOT x.rowid = y.rowid

Another way to locate duplicate values is with a correlated subquery, as
Query 3-14 shows.

Query 3-14
SELECT x.customer_num, x.call_dtime

FROM cust_calls x
WHERE 1 <

(SELECT COUNT (*) FROM cust_calls y
WHERE x.customer_num = y.customer_num)

Query 3-14 locates the same two duplicate customer_num values as Query
3-13 and returns the rows that Query Result 3-14 shows.

You can use the rowid, shown earlier in a self-join, to locate the internal
record number that is associated with a row in a database table. The rowid is,
in effect, a hidden column in every table. The sequential values of rowid have
no special significance and can vary depending on the location of the
physical data in the chunk. Your rowid might vary from the example shown.
For detailed information about how to use rowids, see your Administrator’s
Guide.

Query Result 3-14
customer_num call_dtime

116 1997-11-28 13:34
116 1997-12-21 11:24
3-16 Informix Guide to SQL: Tutorial

Self-Joins
Query 3-15 uses the rowid and the wildcard asterisk symbol (*) in the SELECT
clause to retrieve every row in the manufact table and their corresponding
rowids.

Query 3-15
SELECT rowid, * FROM manufact

You also can use the rowid when you select a specific column, as Query 3-16
shows.

Query 3-16
SELECT rowid, manu_code FROM manufact

Query Result 3-15
rowid manu_code manu_name lead_time

257 SMT Smith 3
258 ANZ Anza 5
259 NRG Norge 7
260 HSK Husky 5
261 HRO Hero 4
262 SHM Shimara 30
263 KAR Karsten 21
264 NKL Nikolus 8
265 PRC ProCycle 9

Query Result 3-16
rowid manu_code

258 ANZ
261 HRO
260 HSK
263 KAR
264 NKL
259 NRG
265 PRC
262 SHM
257 SMT
Composing Advanced SELECT Statements 3-17

Self-Joins
You can use the rowid in the WHERE clause to retrieve rows based on their
internal record number. This method is handy when no other unique column
exists in a table. Query 3-17 uses a rowid from Query 3-16.

Query 3-17
SELECT * FROM manufact WHERE rowid = 263

Query 3-17 returns the row that Query Result 3-17 shows.

Using the USER Function

To obtain additional information about a table, you can combine the rowid
with the USER function.

Query 3-18 assigns the label username to the USER expression column and
returns this information about the cust_calls table.

Query 3-18
SELECT USER username, rowid FROM cust_calls

You also can use the USER function in a WHERE clause when you select the
rowid.

Query Result 3-17
manu_code manu_name lead_time

KAR Karsten 21

Query Result 3-18
username rowid

zenda 257
zenda 258
zenda 259
zenda 513
zenda 514
zenda 515
zenda 769
3-18 Informix Guide to SQL: Tutorial

Self-Joins
Query 3-19 returns the rowid for only those rows that are inserted or updated
by the user who performs the query.

Query 3-19
SELECT rowid FROM cust_calls WHERE user_id = USER

For example, if the user richc used Query 3-19, the output would be as shown
in Query Result 3-19.

Using the DBSERVERNAME Function

You can add the DBSERVERNAME function (or its synonym, SITENAME) to a
query to find out where the current database resides.

Query 3-20 finds the database server name and the user name as well as the
rowid and the tabid, which is the serial-interval table identifier for system
catalog tables.

Query 3-20
SELECT DBSERVERNAME server, tabid, rowid, USER username

FROM systables
WHERE tabid >= 105 OR rowid <= 260
ORDER BY rowid

Query 3-20 assigns display labels to the DBSERVERNAME and USER
expressions and returns the 10 rows from the systables system catalog table,
as Query Result 3-20 shows.

Query Result 3-19
rowid

258
259

Query Result 3-20
 server tabid rowid username

 manatee 1 257 zenda
 manatee 2 258 zenda
 manatee 3 259 zenda
 manatee 4 260 zenda
 manatee 105 274 zenda
 manatee 106 1025 zenda
 manatee 107 1026 zenda
 manatee 108 1027 zenda
 manatee 109 1028 zenda
 manatee 110 1029 zenda
Composing Advanced SELECT Statements 3-19

Outer Joins
Never store a rowid in a permanent table or attempt to use it as a foreign key
because the rowid can change. For example, if a table is dropped and then
reloaded from external data, all the rowids are different.

The USER and DBSERVERNAME statements are discussed in Chapter 2,
“Composing Simple SELECT Statements.”

Outer Joins
Chapter 2, “Composing Simple SELECT Statements,” shows how to create
and use some simple joins. Whereas a simple join treats two or more joined
tables equally, an outer join treats two or more joined tables asymmetrically. An
outer join makes one of the tables dominant (also called preserved) over the
other subservient tables.

The database server supports the following three basic types of outer joins:

■ A simple outer join on two tables

■ An outer join for a simple join to a third table

■ An outer join of two tables to a third table

This section discusses these types of outer joins. For complete information on
the syntax, use, and logic of outer joins, see the Informix Guide to SQL: Syntax.

In a simple join, the result contains only the combinations of rows from the
tables that satisfy the join conditions. Rows that do not satisfy the join conditions
are discarded.

In an outer join, the result contains the combinations of rows from the tables
that satisfy the join conditions. In addition, the result preserves rows from the
dominant table that would otherwise be discarded because no matching row
was found in the subservient table. The dominant-table rows that do not have
a matching subservient-table row receive nulls for the columns of the
subservient table.

An outer join applies conditions to the subservient table while it sequentially
applies the join conditions to the rows of the dominant table. The conditions
are expressed in a WHERE clause.
3-20 Informix Guide to SQL: Tutorial

Outer Joins
An outer join must have a SELECT clause, a FROM clause, and a WHERE
clause. To transform a simple join into an outer join, insert the keyword
OUTER directly before the name of the subservient tables in the FROM clause.
As shown later in this section, you can include the OUTER keyword more
than once in your query.

Before you use outer joins heavily, determine whether one or more simple
joins can work. You often can get by with a simple join when you do not need
supplemental information from other tables.

The examples in this section use table aliases for brevity. Table aliases are
discussed in Chapter 2, “Composing Simple SELECT Statements.”

Simple Join

Query 3-21 is an example of the type of simple join on the customer and
cust_calls tables that is shown in Chapter 2, “Composing Simple SELECT
Statements.”

Query 3-21
SELECT c.customer_num, c.lname, c.company,

c.phone, u.call_dtime, u.call_descr
FROM customer c, cust_calls u
WHERE c.customer_num = u.customer_num

Query 3-21 returns only those rows in which the customer has made a call to
customer service, as Query Result 3-21 shows.
Composing Advanced SELECT Statements 3-21

Outer Joins
Query Result 3-21
customer_num 106
lname Watson
company Watson & Son
phone 415-389-8789
call_dtime 1998-06-12 08:20
call_descr Order was received, but two of the cans of

ANZ tennis balls within the case were empty

customer_num 110
lname Jaeger
company AA Athletics
phone 415-743-3611
call_dtime 1998-07-07 10:24
call_descr Order placed one month ago (6/7) not received.

customer_num 119
lname Shorter
company The Triathletes Club
phone 609-663-6079
call_dtime 1998-07-01 15:00
call_descr Bill does not reflect credit from previous order

customer_num 121
lname Wallack
company City Sports
phone 302-366-7511
call_dtime 1998-07-10 14:05
call_descr Customer likes our merchandise. Requests that we

stock more types of infant joggers. Will call back
to place order.

customer_num 127
lname Satifer
company Big Blue Bike Shop
phone 312-944-5691
call_dtime 1998-07-31 14:30
call_descr Received Hero watches (item # 304) instead of

ANZ watches

customer_num 116
lname Parmelee
company Olympic City
phone 415-534-8822
call_dtime 1997-11-28 13:34
call_descr Received plain white swim caps (313 ANZ) instead

of navy with team logo (313 SHM)

customer_num 116
lname Parmelee
company Olympic City
phone 415-534-8822
call_dtime 1997-12-21 11:24
call_descr Second complaint from this customer! Received

two cases right-handed outfielder gloves (1 HRO)
instead of one case lefties.
3-22 Informix Guide to SQL: Tutorial

Outer Joins
Simple Outer Join on Two Tables

Query 3-22 uses the same select list, tables, and comparison condition as the
preceding example, but this time it creates a simple outer join.

Query 3-22
SELECT c.customer_num, c.lname, c.company,

c.phone, u.call_dtime, u.call_descr
FROM customer c, OUTER cust_calls u
WHERE c.customer_num = u.customer_num

The addition of the keyword OUTER before the cust_calls table makes it the
subservient table. An outer join causes the query to return information on all
customers, whether or not they have made calls to customer service. All rows
from the dominant customer table are retrieved, and null values are assigned
to columns of the subservient cust_calls table, as Query Result 3-22 shows.
Composing Advanced SELECT Statements 3-23

Outer Joins
Query Result 3-22
customer_num 101
lname Pauli
company All Sports Supplies
phone 408-789-8075
call_dtime
call_descr

customer_num 102
lname Sadler
company Sports Spot
phone 415-822-1289
call_dtime
call_descr

customer_num 103
lname Currie
company Phil’s Sports
phone 415-328-4543
call_dtime
call_descr

customer_num 104
lname Higgins
company Play Ball!
phone 415-368-1100
call_dtime
call_descr

customer_num 105
lname Vector
company Los Altos Sports
phone 415-776-3249
call_dtime
call_descr

customer_num 106
lname Watson
company Watson & Son
phone 415-389-8789
call_dtime 1998-06-12 08:20
call_descr Order was received, but two of the cans of

ANZ tennis balls within the case were empty

customer_num 107
lname Ream
company Athletic Supplies
phone 415-356-9876
call_dtime
call_descr

customer_num 108
lname Quinn
company Quinn’s Sports
phone 415-544-8729
call_dtime
call_descr

.

3-24 Informix Guide to SQL: Tutorial

Outer Joins
Outer Join for a Simple Join to a Third Table

Query 3-23 shows an outer join that is the result of a simple join to a third
table. This second type of outer join is known as a nested simple join.

Query 3-23
SELECT c.customer_num, c.lname, o.order_num,

i.stock_num, i.manu_code, i.quantity
FROM customer c, OUTER (orders o, items i)
WHERE c.customer_num = o.customer_num

AND o.order_num = i.order_num
AND manu_code IN ('KAR', 'SHM')

ORDER BY lname

Query 3-23 first performs a simple join on the orders and items tables,
retrieving information on all orders for items with a manu_code of KAR or
SHM. It then performs an outer join to combine this information with data
from the dominant customer table. An optional ORDER BY clause reorganizes
the data into the form that Query Result 3-23 shows.
Composing Advanced SELECT Statements 3-25

Outer Joins
Outer Join of Two Tables to a Third Table

Query 3-24 shows an outer join that is the result of an outer join of each of two
tables to a third table. In this third type of outer join, join relationships are
possible only between the dominant table and the subservient tables.

Query 3-24
SELECT c.customer_num, lname, o.order_num,

order_date, call_dtime
FROM customer c, OUTER orders o, OUTER cust_calls x
WHERE c.customer_num = o.customer_num

AND c.customer_num = x.customer_num
ORDER BY lname
INTO TEMP service

Query Result 3-23
customer_num lname order_num stock_num manu_code quantity

114 Albertson
118 Baxter
113 Beatty
103 Currie
115 Grant
123 Hanlon 1020 301 KAR 4
123 Hanlon 1020 204 KAR 2
125 Henry
104 Higgins
110 Jaeger
120 Jewell 1017 202 KAR 1
120 Jewell 1017 301 SHM 2
111 Keyes
112 Lawson
128 Lessor
109 Miller
126 Neelie
122 O’Brian 1019 111 SHM 3
116 Parmelee
101 Pauli
124 Putnum 1021 202 KAR 3
108 Quinn
107 Ream
102 Sadler
127 Satifer 1023 306 SHM 1
127 Satifer 1023 105 SHM 1
127 Satifer 1023 110 SHM 1
119 Shorter 1016 101 SHM 2
117 Sipes
105 Vector
121 Wallack 1018 302 KAR 3
106 Watson
3-26 Informix Guide to SQL: Tutorial

Outer Joins
Query 3-24 individually joins the subservient tables orders and cust_calls to
the dominant customer table; it does not join the two subservient tables. An
INTO TEMP clause selects the results into a temporary table for further
manipulation or queries, as Query Result 3-24 shows.

If Query 3-24 had tried to create a join condition between the two subservient
tables o and x, as Query 3-25 shows, an error message would have indicated
the creation of a two-sided outer join.

Query 3-25
WHERE o.customer_num = x.customer_num

Query Result 3-24
customer_num lname order_num order_date call_dtime

114 Albertson
118 Baxter
113 Beatty
103 Currie
115 Grant 1010 06/17/1998
123 Hanlon 1020 07/11/1998
125 Henry
104 Higgins 1003 05/22/1998
104 Higgins 1001 05/20/1998
104 Higgins 1013 06/22/1998
104 Higgins 1011 06/18/1998
110 Jaeger 1015 06/27/1998 1998-07-07 10:24
110 Jaeger 1008 06/07/1998 1998-07-07 10:24
120 Jewell 1017 07/09/1998
111 Keyes 1009 06/14/1998
112 Lawson 1006 05/30/1998
109 Miller
128 Moore
126 Neelie 1022 07/24/1998
122 O’Brian 1019 07/11/1998
116 Parmelee 1005 05/24/1998 1997-12-21 11:24
116 Parmelee 1005 05/24/1998 1997-11-28 13:34
101 Pauli 1002 05/21/1998
124 Putnum 1021 07/23/1998
108 Quinn
107 Ream
102 Sadler
127 Satifer 1023 07/24/1998 1998-07-31 14:30
119 Shorter 1016 06/29/1998 1998-07-01 15:00
117 Sipes 1007 05/31/1998
117 Sipes 1012 06/18/1998
105 Vector
121 Wallack 1018 07/10/1998 1998-07-10 14:05
106 Watson 1004 05/22/1998 1998-06-12 08:20
106 Watson 1014 06/25/1998 1998-06-12 08:20
Composing Advanced SELECT Statements 3-27

Outer Joins
Joins That Combine Outer Joins

To achieve multiple levels of nesting, you can create a join that employs any
combination of the three types of outer joins. Query 3-26 creates a join that is
the result of a combination of a simple outer join on two tables and a second
outer join.

Query 3-26
SELECT c.customer_num, lname, o.order_num,

stock_num, manu_code, quantity
FROM customer c, OUTER (orders o, OUTER items i)
WHERE c.customer_num = o.customer_num

AND o.order_num = i.order_num
AND manu_code IN ('KAR', 'SHM')

ORDER BY lname

Query 3-26 first performs an outer join on the orders and items tables,
retrieving information on all orders for items with a manu_code of KAR or
SHM. It then performs a second outer join that combines this information
with data from the dominant customer table. Query 3-26 preserves order
numbers that the previous example eliminated, returning rows for orders
that do not contain items with either manufacturer code. Query Result 3-26
shows how the ORDER BY clause reorganizes the data.
3-28 Informix Guide to SQL: Tutorial

Outer Joins
You can state the join conditions in two ways when you apply an outer join
to the result of an outer join to a third table. The two subservient tables are
joined, but you can join the dominant table to either subservient table
without affecting the results if the dominant table and the subservient table
share a common column.

Query Result 3-26
customer_num lname order_num stock_num manu_code quantity

114 Albertson
118 Baxter
113 Beatty
103 Currie
115 Grant 1010
123 Hanlon 1020 204 KAR 2
123 Hanlon 1020 301 KAR 4
125 Henry
104 Higgins 1011
104 Higgins 1001
104 Higgins 1013
104 Higgins 1003
110 Jaeger 1008
110 Jaeger 1015
120 Jewell 1017 301 SHM 2
120 Jewell 1017 202 KAR 1
111 Keyes 1009
112 Lawson 1006
128 Lessor
109 Miller
126 Neelie 1022
122 O’Brian 1019 111 SHM 3
116 Parmelee 1005
101 Pauli 1002
124 Putnum 1021 202 KAR 3
108 Quinn
107 Ream
102 Sadler
127 Satifer 1023 110 SHM 1
127 Satifer 1023 105 SHM 1
127 Satifer 1023 306 SHM 1
119 Shorter 1016 101 SHM 2
117 Sipes 1012
117 Sipes 1007
105 Vector
121 Wallack 1018 302 KAR 3
106 Watson 1014
106 Watson 1004
Composing Advanced SELECT Statements 3-29

Subqueries in SELECT Statements
Subqueries in SELECT Statements
A SELECT statement nested in the WHERE clause of another SELECT statement
(or in an INSERT, DELETE, or UPDATE statement) is called a subquery. Each
subquery must contain a SELECT clause and a FROM clause. A subquery must
be enclosed in parentheses so that the database server performs that
operation first.

Subqueries can be correlated or uncorrelated. A subquery (or inner SELECT
statement) is correlated when the value it produces depends on a value
produced by the outer SELECT statement that contains it. Any other kind of
subquery is considered uncorrelated.

The important feature of a correlated subquery is that, because it depends on
a value from the outer SELECT, it must be executed repeatedly, once for every
value that the outer SELECT produces. An uncorrelated subquery is executed
only once.

You can construct a SELECT statement with a subquery to replace two
separate SELECT statements.

Subqueries in SELECT statements allow you to perform the following actions:

■ Compare an expression to the result of another SELECT statement

■ Determine whether the results of another SELECT statement include
an expression

■ Determine whether another SELECT statement selects any rows

An optional WHERE clause in a subquery is often used to narrow the search
condition.
3-30 Informix Guide to SQL: Tutorial

Using ALL
A subquery selects and returns values to the first or outer SELECT statement.
A subquery can return no value, a single value, or a set of values:

■ If a subquery returns no value, the query does not return any rows.
Such a subquery is equivalent to a null value.

■ If a subquery returns one value, the value is in the form of either one
aggregate expression or exactly one row and one column. Such a
subquery is equivalent to a single number or character value.

■ If a subquery returns a list or set of values, the values represent either
one row or one column.

The following keywords introduce a subquery in the WHERE clause of a
SELECT statement:

■ ALL

■ ANY

■ IN

■ EXISTS

You can use any relational operator with ALL and ANY to compare something
to every one of (ALL) or to any one of (ANY) the values that the subquery
produces. You can use the keyword SOME in place of ANY. The operator IN is
equivalent to = ANY. To create the opposite search condition, use the
keyword NOT or a different relational operator.

The EXISTS operator tests a subquery to see if it found any values; that is, it
asks if the result of the subquery is not null. You cannot use the EXISTS
keyword in a subquery that contains a column with a TEXT or BYTE data type.

For the complete syntax that you use to create a condition with a subquery,
see the Informix Guide to SQL: Syntax.

Using ALL
Use the keyword ALL preceding a subquery to determine whether a
comparison is true for every value returned. If the subquery returns no
values, the search condition is true. (If it returns no values, the condition is
true of all the zero values.)
Composing Advanced SELECT Statements 3-31

Using ANY
Query 3-27 lists the following information for all orders that contain an item
for which the total price is less than the total price on every item in order
number 1023.

Query 3-27
SELECT order_num, stock_num, manu_code, total_price

FROM items
WHERE total_price < ALL

(SELECT total_price FROM items
WHERE order_num = 1023)

Using ANY
Use the keyword ANY (or its synonym SOME) before a subquery to determine
whether a comparison is true for at least one of the values returned. If the
subquery returns no values, the search condition is false. (Because no values
exist, the condition cannot be true for one of them.)

Query 3-28 finds the order number of all orders that contain an item for
which the total price is greater than the total price of any one of the items in
order number 1005.

Query 3-28
SELECT DISTINCT order_num

FROM items
WHERE total_price > ANY

(SELECT total_price
FROM items
WHERE order_num = 1005)

Query Result 3-27
order_num stock_num manu_code total_price

1003 9 ANZ $20.00
1005 6 SMT $36.00
1006 6 SMT $36.00
1010 6 SMT $36.00
1013 5 ANZ $19.80
1013 6 SMT $36.00
1018 302 KAR $15.00
3-32 Informix Guide to SQL: Tutorial

Single-Valued Subqueries
Single-Valued Subqueries
You do not need to include the keyword ALL or ANY if you know the
subquery can return exactly one value to the outer-level query. A subquery that
returns exactly one value can be treated like a function. This kind of subquery
often uses an aggregate function because aggregate functions always return
single values.

Query Result 3-28
order_num

1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
Composing Advanced SELECT Statements 3-33

Single-Valued Subqueries
Query 3-29 uses the aggregate function MAX in a subquery to find the
order_num for orders that include the maximum number of volleyball nets.

Query 3-29
SELECT order_num FROM items

WHERE stock_num = 9
AND quantity =

(SELECT MAX (quantity)
FROM items
WHERE stock_num = 9)

Query 3-30 uses the aggregate function MIN in the subquery to select items
for which the total price is higher than 10 times the minimum price.

Query 3-30
SELECT order_num, stock_num, manu_code, total_price

FROM items x
WHERE total_price >

(SELECT 10 * MIN (total_price)
FROM items
WHERE order_num = x.order_num)

Query Result 3-29
order_num

1012

Query Result 3-30
order_num stock_num manu_code total_price

1003 8 ANZ $840.00
1018 307 PRC $500.00
1018 110 PRC $236.00
1018 304 HRO $280.00
3-34 Informix Guide to SQL: Tutorial

Correlated Subqueries
Correlated Subqueries
Query 3-31 is an example of a correlated subquery, which returns a list of the
10 latest shipping dates in the orders table. It includes an ORDER BY clause
after the subquery to order the results because you cannot include ORDER BY
within a subquery.

Query 3-31
SELECT po_num, ship_date FROM orders main

WHERE 10 >
(SELECT COUNT (DISTINCT ship_date)

FROM orders sub
WHERE sub.ship_date > main.ship_date)
AND ship_date IS NOT NULL

ORDER BY ship_date, po_num

The subquery is correlated because the number that it produces depends on
main.ship_date, a value that the outer SELECT produces. Thus, the subquery
must be executed anew for every row that the outer query considers.

Query 3-31 uses the COUNT function to return a value to the main query. The
ORDER BY clause then orders the data. The query locates and returns the
16 rows that have the 10 latest shipping dates, as Query Result 3-31 shows.

If you use a correlated subquery, such as Query 3-31, on a very large table,
you should index the ship_date column to improve performance. Otherwise,
this SELECT statement is inefficient because it executes the subquery once for
every row of the table. For information about indexing and performance
issues, see your Administrator’s Guide and Performance Guide.

Query Result 3-31
po_num ship_date

4745 06/21/1998
278701 06/29/1998
429Q 06/29/1998
8052 07/03/1998
B77897 07/03/1998
LZ230 07/06/1998
B77930 07/10/1998
PC6782 07/12/1998
DM354331 07/13/1998
S22942 07/13/1998
MA003 07/16/1998
W2286 07/16/1998
Z55709 07/16/1998
C3288 07/25/1998
KF2961 07/30/1998
W9925 07/30/1998
Composing Advanced SELECT Statements 3-35

Using EXISTS
Using EXISTS
The keyword EXISTS is known as an existential qualifier because the subquery
is true only if the outer SELECT, as Query 3-32a shows, finds at least one row.

Query 3-32a

SELECT UNIQUE manu_name, lead_time
FROM manufact
WHERE EXISTS

(SELECT * FROM stock
WHERE description MATCHES '*shoe*'

AND manufact.manu_code = stock.manu_code)

You often can construct a query with EXISTS that is equivalent to one that uses
IN. Query 3-32b uses an IN predicate to construct a query that returns the
same result as Query 3-32a.

Query 3-32b
SELECT UNIQUE manu_name, lead_time

FROM stock, manufact
WHERE manufact.manu_code IN

(SELECT manu_code FROM stock
WHERE description MATCHES '*shoe*')

AND stock.manu_code = manufact.manu_code

Query 3-32a and Query 3-32b return rows for the manufacturers that produce
a kind of shoe as well as the lead time for ordering the product. Query Result
3-32 shows the return values.

Add the keyword NOT to IN or to EXISTS to create a search condition that is
the opposite of the condition in the preceding queries. You can also substitute
!=ALL for NOT IN.

Query Result 3-32
manu_name lead_time

Anza 5
Hero 4
Karsten 21
Nikolus 8
ProCycle 9
Shimara 30
3-36 Informix Guide to SQL: Tutorial

Using EXISTS
Query 3-33 shows two ways to do the same thing. One way might allow the
database server to do less work than the other, depending on the design of
the database and the size of the tables. To find out which query might be
better, use the SET EXPLAIN command to get a listing of the query plan. SET
EXPLAIN is discussed in your Performance Guide and the Informix Guide to
SQL: Syntax.

Query 3-33
SELECT customer_num, company FROM customer

WHERE customer_num NOT IN
(SELECT customer_num FROM orders

WHERE customer.customer_num = orders.customer_num)

SELECT customer_num, company FROM customer
WHERE NOT EXISTS

(SELECT * FROM orders
WHERE customer.customer_num = orders.customer_num)

Each statement in Query 3-33 returns the rows that Query Result 3-33 shows,
which identify customers who have not placed orders.

The keywords EXISTS and IN are used for the set operation known as
intersection, and the keywords NOT EXISTS and NOT IN are used for the set
operation known as difference. These concepts are discussed in “Set
Operations” on page 3-39.

Query 3-34 performs a subquery on the items table to identify all the items in
the stock table that have not yet been ordered.

Query 3-34
SELECT stock.* FROM stock

WHERE NOT EXISTS
(SELECT * FROM items

WHERE stock.stock_num = items.stock_num
AND stock.manu_code = items.manu_code)

Query Result 3-33
customer_num company

102 Sports Spot
103 Phil’s Sports
105 Los Altos Sports
107 Athletic Supplies
108 Quinn’s Sports
109 Sport Stuff
113 Sportstown
114 Sporting Place
118 Blue Ribbon Sports
125 Total Fitness Sports
128 Phoenix University
Composing Advanced SELECT Statements 3-37

Using EXISTS
Query 3-34 returns the rows that Query Result 3-34 shows.

No logical limit exists to the number of subqueries a SELECT statement can
have, but the size of any statement is physically limited when it is considered
as a character string. However, this limit is probably larger than any practical
statement that you are likely to compose.

Query Result 3-34
stock_num manu_code description unit_price unit unit_descr

101 PRC bicycle tires $88.00 box 4/box
102 SHM bicycle brakes $220.00 case 4 sets/case
102 PRC bicycle brakes $480.00 case 4 sets/case
105 PRC bicycle wheels $53.00 pair pair
106 PRC bicycle stem $23.00 each each
107 PRC bicycle saddle $70.00 pair pair
108 SHM crankset $45.00 each each
109 SHM pedal binding $200.00 case 4 pairs/case
110 ANZ helmet $244.00 case 4/case
110 HRO helmet $260.00 case 4/case
112 SHM 12-spd, assmbld $549.00 each each
113 SHM 18-spd, assmbld $685.90 each each
201 KAR golf shoes $90.00 each each
202 NKL metal woods $174.00 case 2 sets/case
203 NKL irons/wedge $670.00 case 2 sets/case
205 NKL 3 golf balls $312.00 case 24/case
205 HRO 3 golf balls $312.00 case 24/case
301 NKL running shoes $97.00 each each
301 HRO running shoes $42.50 each each
301 PRC running shoes $75.00 each each
301 ANZ running shoes $95.00 each each
302 HRO ice pack $4.50 each each
303 KAR socks $36.00 box 24 pairs/box
305 HRO first-aid kit $48.00 case 4/case
306 PRC tandem adapter $160.00 each each
308 PRC twin jogger $280.00 each each
309 SHM ear drops $40.00 case 20/case
310 SHM kick board $80.00 case 10/case
310 ANZ kick board $84.00 case 12/case
311 SHM water gloves $48.00 box 4 pairs/box
312 SHM racer goggles $96.00 box 12/box
312 HRO racer goggles $72.00 box 12/box
313 SHM swim cap $72.00 box 12/box
313 ANZ swim cap $60.00 box 12/box
3-38 Informix Guide to SQL: Tutorial

Set Operations
Perhaps you want to check whether information has been entered correctly
in the database. One way to find errors in a database is to write a query that
returns output only when errors exist. A subquery of this type serves as a
kind of audit query, as Query 3-35 shows.

Query 3-35
SELECT * FROM items

WHERE total_price != quantity *
(SELECT unit_price FROM stock

WHERE stock.stock_num = items.stock_num
AND stock.manu_code = items.manu_code)

Query 3-35 returns only those rows for which the total price of an item on an
order is not equal to the stock unit price times the order quantity. If no
discount has been applied, such rows were probably entered incorrectly in
the database. The query returns rows only when errors occur. If information
is correctly inserted into the database, no rows are returned.

Set Operations
The standard set operations union, intersection, and difference let you
manipulate database information. These three operations let you use SELECT
statements to check the integrity of your database after you perform an
update, insert, or delete. They can be useful when you transfer data to a
history table, for example, and want to verify that the correct data is in the
history table before you delete the data from the original table.

Query Result 3-35
item_num order_num stock_num manu_code quantity total_price

1 1004 1 HRO 1 $960.00
2 1006 5 NRG 5 $190.00
Composing Advanced SELECT Statements 3-39

Union
Union
The union operation uses the UNION keyword, or operator, to combine two
queries into a single compound query. You can use the UNION operator
between two or more SELECT statements to unite them and produce a
temporary table that contains rows that exist in any or all of the original
tables. You can also use the UNION operator in the definition of a view.

You cannot use a UNION operator inside a subquery.

Figure 3-1 illustrates the union set operation.

The UNION keyword selects all rows from the two queries, removes
duplicates, and returns what is left. Because the results of the queries are
combined into a single result, the select list in each query must have the same
number of columns. Also, the corresponding columns that are selected from
each table must contain the same data type (CHARACTER data type columns
must be the same length), and these corresponding columns must all allow
or all disallow nulls.

Figure 3-1
The Union Set Operation

quantity > 3

unit_price < 25.00

unit_price

quantity

qualifies

less than or
equal to 3

greater than or
equal to 25.00

less than
25.00

qualifies

qualifies

greater than 3

SELECT DISTINCT stock_num, manu_code
FROM stock
WHERE unit_price < 25.00

UNION

SELECT stock_num, manu_code
FROM items
WHERE quantity > 3
3-40 Informix Guide to SQL: Tutorial

Union
Query 3-36 performs a union on the stock_num and manu_code columns in
the stock and items tables.

Query 3-36
SELECT DISTINCT stock_num, manu_code

FROM stock
WHERE unit_price < 25.00

UNION

SELECT stock_num, manu_code
FROM items
WHERE quantity > 3

Query 3-36 selects those items that have a unit price of less than $25.00 or that
have been ordered in quantities greater than three and lists their stock_num
and manu_code, as Query Result 3-36 shows.

If you include an ORDER BY clause, it must follow Query 3-36 and use an
integer, not an identifier, to refer to the ordering column. Ordering takes
place after the set operation is complete.

Query 3-37
SELECT DISTINCT stock_num, manu_code

FROM stock
WHERE unit_price < 25.00

UNION

SELECT stock_num, manu_code
FROM items
WHERE quantity > 3
ORDER BY 2

Query Result 3-36

stock_num manu_code

5 ANZ
5 NRG
5 SMT
9 ANZ

103 PRC
106 PRC
201 NKL
301 KAR
302 HRO
302 KAR
Composing Advanced SELECT Statements 3-41

Union
The compound query in Query 3-37 selects the same rows as Query 3-36 but
displays them in order of the manufacturer code, as Query Result 3-37 shows.

By default, the UNION keyword excludes duplicate rows. Add the optional
keyword ALL, as Query 3-38 shows, to retain the duplicate values.

Query 3-38
SELECT stock_num, manu_code

FROM stock
WHERE unit_price < 25.00

UNION ALL

SELECT stock_num, manu_code
FROM items
WHERE quantity > 3
ORDER BY 2
INTO TEMP stockitem

Query Result 3-37
stock_num manu_code

5 ANZ
9 ANZ

302 HRO
301 KAR
302 KAR
201 NKL
5 NRG

103 PRC
106 PRC
5 SMT
3-42 Informix Guide to SQL: Tutorial

Union
Query 3-38 uses the UNION ALL keywords to unite two SELECT statements
and adds an INTO TEMP clause after the final SELECT to put the results into a
temporary table. It returns the same rows as Query 3-37 but also includes
duplicate values.

Corresponding columns in the select lists for the combined queries must
have identical data types, but the columns do not need to use the same
identifier.

Query 3-39 selects the state column from the customer table and the
corresponding code column from the state table.

Query 3-39
SELECT DISTINCT state

FROM customer
WHERE customer_num BETWEEN 120 AND 125

UNION

SELECT DISTINCT code
FROM state
WHERE sname MATCHES '*a'

Query Result 3-38
stock_num manu_code

9 ANZ
5 ANZ
9 ANZ
5 ANZ
9 ANZ
5 ANZ
5 ANZ
5 ANZ

302 HRO
302 KAR
301 KAR
201 NKL
5 NRG
5 NRG

103 PRC
106 PRC
5 SMT
5 SMT
Composing Advanced SELECT Statements 3-43

Union
Query Result 3-39 returns state code abbreviations for customer numbers 120
through 125 and for states whose sname ends in a.

In compound queries, the column names or display labels in the first SELECT
statement are the ones that appear in the results. Thus, in Query 3-39, the
column name state from the first SELECT statement is used instead of the
column name code from the second.

Query Result 3-39
state

AK
AL
AZ
CA
DE
FL
GA
IA
IN
LA
MA
MN
MT
NC
ND
NE
NJ
NV
OK
PA
SC
SD
VA
WV
3-44 Informix Guide to SQL: Tutorial

Union
Query 3-40 performs a union on three tables. The maximum number of
unions depends on the practicality of the application and any memory
limitations.

Query 3-40
SELECT stock_num, manu_code

FROM stock
WHERE unit_price > 600.00

UNION ALL

SELECT stock_num, manu_code
FROM catalog
WHERE catalog_num = 10025

UNION ALL

SELECT stock_num, manu_code
FROM items
WHERE quantity = 10
ORDER BY 2

Query 3-40 selects items where the unit_price in the stock table is greater
than $600, the catalog_num in the catalog table is 10025, or the quantity in
the items table is 10; and the query orders the data by manu_code. Query
Result 3-40 shows the return values.

Query Result 3-40
stock_num manu_code

5 ANZ
9 ANZ
8 ANZ
4 HSK
1 HSK

203 NKL
5 NRG

106 PRC
113 SHM
Composing Advanced SELECT Statements 3-45

Union
For the complete syntax of the SELECT statement and the UNION operator,
see the Informix Guide to SQL: Syntax. For information specific to the
INFORMIX-ESQL/C product and any limitations that involve the INTO clause
and compound queries, see the INFORMIX-ESQL/C Programmer’s Manual.

Query 3-41 uses a combined query to select data into a temporary table and
then adds a simple query to order and display it. You must separate the
combined and simple queries with a semicolon.

The combined query uses a literal in the select list to tag the output of part of
a union so it can be distinguished later. The tag is given the label sortkey. The
simple query uses that tag as a sort key to order the retrieved rows.

Query 3-41
SELECT '1' sortkey, lname, fname, company,

city, state, phone
FROM customer x
WHERE state = 'CA'

UNION

SELECT '2' sortkey, lname, fname, company,
city, state, phone

FROM customer y
WHERE state <> 'CA'
INTO TEMP calcust;

SELECT * FROM calcust
ORDER BY 1

Query 3-41 creates a list in which the most frequently called customers, those
from California, appear first, as Query Result 3-41 shows.
3-46 Informix Guide to SQL: Tutorial

Union
Query Result 3-41
sortkey 1
lname Baxter
fname Dick
company Blue Ribbon Sports
city Oakland
state CA
phone 415-655-0011

sortkey 1
lname Beatty
fname Lana
company Sportstown
city Menlo Park
state CA
phone 415-356-9982

sortkey 1
lname Currie
fname Philip
company Phil’s Sports
city Palo Alto
state CA
phone 415-328-4543

sortkey 1
lname Grant
fname Alfred
company Gold Medal Sports
city Menlo Park
state CA
phone 415-356-1123
.
.
.
sortkey 2
lname Satifer
fname Kim
company Big Blue Bike Shop
city Blue Island
state NY
phone 312-944-5691

sortkey 2
lname Shorter
fname Bob
company The Triathletes Club
city Cherry Hill
state NJ
phone 609-663-6079

sortkey 2
lname Wallack
fname Jason
company City Sports
city Wilmington
state DE
phone 302-366-7511
Composing Advanced SELECT Statements 3-47

Intersection
Intersection
The intersection of two sets of rows produces a table containing rows that exist
in both the original tables. Use the keyword EXISTS or IN to introduce
subqueries that show the intersection of two sets. Figure 3-2 illustrates the
intersection set operation.

Query 3-42 is an example of a nested SELECT statement that shows the
intersection of the stock and items tables.

Query 3-42
SELECT stock_num, manu_code, unit_price

FROM stock
WHERE stock_num IN

(SELECT stock_num FROM items)
ORDER BY stock_num

Query Result 3-42 contains all the elements from both sets, returning the
following 57 rows.

Figure 3-2
The Intersection Set Operation

stock_num

stock_num

qualifies

not in items
table

not in stock
table

exists in stock
table

exists in items
table

SELECT stock_num, manu_code, unit_price
FROM stock
WHERE stock_num IN
(SELECT stock_num FROM items)

ORDER BY stock_num stock table

items table
3-48 Informix Guide to SQL: Tutorial

Intersection
Query Result 3-42stock_num manu_code unit_price

1 HRO $250.00z
1 HSK $800.00
1 SMT $450.00
2 HRO $126.00
3 HSK $240.00
3 SHM $280.00
4 HRO $480.00
4 HSK $960.00
5 ANZ $19.80
5 NRG $28.00
5 SMT $25.00
6 ANZ $48.00
6 SMT $36.00
7 HRO $600.00
8 ANZ $840.00
9 ANZ $20.00

101 PRC $88.00
101 SHM $68.00
103 PRC $20.00
104 PRC $58.00
105 PRC $53.00
105 SHM $80.00
109 PRC $30.00
109 SHM $200.00
110 ANZ $244.00
110 HRO $260.00
110 HSK $308.00
110 PRC $236.00
110 SHM $228.00
111 SHM $499.99
114 PRC $120.00
201 ANZ $75.00
201 KAR $90.00
201 NKL $37.50
202 KAR $230.00
202 NKL $174.00
204 KAR $45.00
205 ANZ $312.00
205 HRO $312.00
205 NKL $312.00
301 ANZ $95.00
301 HRO $42.50
301 KAR $87.00
301 NKL $97.00
301 PRC $75.00
301 SHM $102.00
302 HRO $4.50
302 KAR $5.00
303 KAR $36.00
303 PRC $48.00
304 ANZ $170.00
304 HRO $280.00
306 PRC $160.00
306 SHM $190.00
307 PRC $250.00
309 HRO $40.00
309 SHM $40.00
Composing Advanced SELECT Statements 3-49

Difference
Difference
The difference between two sets of rows produces a table that contains rows in
the first set that are not also in the second set. Use the keywords NOT EXISTS
or NOT IN to introduce subqueries that show the difference between two sets.
Figure 3-3 illustrates the difference set operation.

Figure 3-3
The Difference Set Operation

stock_num

stock_num

qualifies

not in items
table

not in stock
table

exists in stock
table

exists in items
table

SELECT stock_num, manu_code,
unit_price
FROM stock
WHERE stock_num NOT IN
(SELECT stock_num FROM items)

ORDER BY stock_num stock table

items table
3-50 Informix Guide to SQL: Tutorial

Difference
Query 3-43 is an example of a nested SELECT statement that shows the
difference between the stock and items tables.

Query 3-43
SELECT stock_num, manu_code, unit_price

FROM stock
WHERE stock_num NOT IN

(SELECT stock_num FROM items)
ORDER BY stock_num

Query Result 3-43 contains all the elements from only the first set, which
returns 17 rows.

Query Result 3-43
stock_num manu_code unit_price

102 PRC $480.00
102 SHM $220.00
106 PRC $23.00
107 PRC $70.00
108 SHM $45.00
112 SHM $549.00
113 SHM $685.90
203 NKL $670.00
305 HRO $48.00
308 PRC $280.00
310 ANZ $84.00
310 SHM $80.00
311 SHM $48.00
312 HRO $72.00
312 SHM $96.00
313 ANZ $60.00
313 SHM $72.00
Composing Advanced SELECT Statements 3-51

Summary
Summary
This chapter builds on concepts introduced in Chapter 2, “Composing
Simple SELECT Statements.” It provides sample syntax and results for more
advanced kinds of SELECT statements, which are used to query a relational
database. This chapter presents the following material:

■ Introduces the GROUP BY and HAVING clauses, which can be used
with aggregates to return groups of rows and apply conditions to
those groups

■ Describes how to use the rowid to retrieve internal record numbers
from tables and system-catalog tables and discusses the internal
table identifier or tabid

■ Shows how to join a table to itself with a self-join to compare values
in a column with other values in the same column and to identify
duplicates

■ Introduces the keyword OUTER, explains how an outer join treats
two or more tables asymmetrically, and provides examples of the
four kinds of outer join

■ Describes how to nest a SELECT statement in the WHERE clause of
another SELECT statement to create correlated and uncorrelated
subqueries and shows how to use aggregate functions in subqueries

■ Demonstrates how to use the keywords ALL, ANY, EXISTS, IN, and
SOME to create subqueries, and the effect of adding the keyword
NOT or a relational operator

■ Discusses the union, intersection, and difference set operations

■ Shows how to use the UNION and UNION ALL keywords to create
compound queries that consist of two or more SELECT statements
3-52 Informix Guide to SQL: Tutorial

4
Chapter
Modifying Data
Statements That Modify Data 4-3

Deleting Rows . 4-4
Deleting All Rows of a Table 4-4
Deleting a Known Number of Rows 4-5
Deleting an Unknown Number of Rows 4-5
Complicated Delete Conditions 4-6

Inserting Rows . 4-7
Single Rows . 4-7

Possible Column Values 4-8
Listing Specific Column Names 4-9

Multiple Rows and Expressions 4-10
Restrictions on the Insert Selection 4-11

Updating Rows . 4-12
Selecting Rows to Update 4-13
Updating with Uniform Values 4-14
Restrictions on Updates 4-15
Updating with Selected Values 4-15
Using a CASE Expression to Update a Column 4-16
Using a Join to Update a Column 4-17

Privileges on a Database 4-17
Database-Level Privileges 4-18
Table-Level Privileges 4-18
Displaying Table Privileges 4-19

Data Integrity. 4-20
Entity Integrity 4-21
Semantic Integrity 4-21
Referential Integrity 4-22

Using the ON DELETE CASCADE Option 4-24

4-2 Infor
Example of Cascading Deletes 4-25
Restrictions on Cascading Deletes 4-26

Object Modes and Violation Detection 4-26
Object Modes for Constraints. 4-26
Object Modes for Unique Indexes 4-27
Object Modes for Triggers 4-28
SQL Statements and Examples 4-28

Interrupted Modifications 4-28
Transactions . 4-30
Transaction Logging 4-30

Transaction Logging for Informix Dynamic Server with AD/XP
Options 4-31

Logging and Cascading Deletes 4-31
Specifying Transactions 4-32

Backups and Logs with Informix Database Servers 4-33

Concurrency and Locks 4-34

Data Replication . 4-35
Informix Database Server Data Replication 4-36

Summary . 4-37
mix Guide to SQL: Tutorial

Modifying data is fundamentally different from querying
data. Querying data involves examining the contents of tables. Modifying
data involves changing the contents of tables.

Think about what happens if the system hardware or software fails during a
query. In this case, the effect on the application can be severe, but the
database itself is unharmed. However, if the system fails while a modification
is under way, the state of the database is in doubt. Obviously, a database in
an uncertain state has far-reaching implications. Before you delete, insert, or
update rows in a database, ask yourself the following questions:

■ Is user access to the database and its tables secure; that is, are specific
users given limited database and table-level privileges?

■ Does the modified data preserve the existing integrity of the
database?

■ Are systems in place that make the database relatively immune to
external events that might cause system or hardware failures?

If you cannot answer yes to each of these questions, do not panic. Solutions
to all these problems are built into the Informix database servers. After a
description of the statements that modify data, this chapter discusses these
solutions. The Informix Guide to Database Design and Implementation covers
these topics in greater detail.

Statements That Modify Data
The following statements modify data:

■ DELETE

■ INSERT

■ UPDATE
Modifying Data 4-3

Deleting Rows
Although these SQL statements are relatively simple when compared with
the more advanced SELECT statements, use them carefully because they
change the contents of the database.

Deleting Rows
The DELETE statement removes any row or combination of rows from a table.
You cannot recover a deleted row after the transaction is committed. (Trans-
actions are discussed under “Interrupted Modifications” on page 4-28. For
now, think of a transaction and a statement as the same thing.)

When you delete a row, you must also be careful to delete any rows of other
tables whose values depend on the deleted row. If your database enforces
referential constraints, you can use the ON DELETE CASCADE option of the
CREATE TABLE or ALTER TABLE statements to allow deletes to cascade from
one table in a relationship to another. For more information on referential
constraints and the ON DELETE CASCADE option, refer to “Referential
Integrity” on page 4-22.

Deleting All Rows of a Table
The DELETE statement specifies a table and usually contains a WHERE clause
that designates the row or rows that are to be removed from the table. If the
WHERE clause is left out, all rows are deleted. Do not execute the following
statement:

DELETE FROM customer

Because this DELETE statement does not contain a WHERE clause, all rows
from the customer table are deleted. If you attempt an unconditional delete
using the DB-Access or Relational Object Manager menu options, the
program warns you and asks for confirmation. However, an unconditional
delete from within a program can occur without warning.
4-4 Informix Guide to SQL: Tutorial

Deleting a Known Number of Rows
Deleting a Known Number of Rows
The WHERE clause in a DELETE statement has the same form as the WHERE
clause in a SELECT Statement. You can use it to designate exactly which row
or rows should be deleted. You can delete a customer with a specific
customer number, as the following example shows:

DELETE FROM customer WHERE customer_num = 175

In this example, because the customer_num column has a unique constraint,
you can ensure that no more than one row is deleted.

Deleting an Unknown Number of Rows
You can also choose rows that are based on nonindexed columns, as the
following example shows:

DELETE FROM customer WHERE company = 'Druid Cyclery'

Because the column that is tested does not have a unique constraint, this
statement might delete more than one row. (Druid Cyclery might have two
stores, both with the same name but different customer numbers.)

To find out how many rows a DELETE statement affects, select the count of
qualifying rows from the customer table for Druid Cyclery.

SELECT COUNT(*) FROM customer WHERE company = 'Druid Cyclery'

You can also select the rows and display them to ensure that they are the ones
you want to delete.

Using a SELECT statement as a test is only an approximation, however, when
the database is available to multiple users concurrently. Between the time
you execute the SELECT statement and the subsequent DELETE statement,
other users could have modified the table and changed the result. In this
example, another user might perform the following actions:

■ Insert a new row for another customer named Druid Cyclery

■ Delete one or more of the Druid Cyclery rows before you insert the
new row

■ Update a Druid Cyclery row to have a new company name, or
update some other customer to have the name Druid Cyclery
Modifying Data 4-5

Complicated Delete Conditions
Although it is not likely that other users would do these things in that brief
interval, the possibility does exist. This same problem affects the UPDATE
statement. Ways of addressing this problem are discussed under “Concur-
rency and Locks” on page 4-34, and in greater detail in Chapter 7,
“Programming for a Multiuser Environment.”

Another problem you might encounter is a hardware or software failure
before the statement finishes. In this case, the database might have deleted no
rows, some rows, or all specified rows. The state of the database is unknown,
which is undesirable. To prevent this situation, use transaction logging, as
discussed in “Interrupted Modifications” on page 4-28.

Complicated Delete Conditions
The WHERE clause in a DELETE statement can be almost as complicated as the
one in a SELECT statement. It can contain multiple conditions that are
connected by AND and OR, and it might contain subqueries.

Suppose you discover that some rows of the stock table contain incorrect
manufacturer codes. Rather than update them, you want to delete them so
that they can be reentered. You know that these rows, unlike the correct ones,
have no matching rows in the manufact table. The fact that these incorrect
rows have no matching rows in the manufact table allows you to write a
DELETE statement such as the one in the following example:

DELETE FROM stock
WHERE 0 = (SELECT COUNT(*) FROM manufact

 WHERE manufact.manu_code = stock.manu_code)

The subquery counts the number of rows of manufact that match; the count
is 1 for a correct row of stock and 0 for an incorrect one. The latter rows are
chosen for deletion.

One way to develop a DELETE statement with a complicated condition is
to first develop a SELECT statement that returns precisely the rows to be
deleted. Write it as SELECT *; when it returns the desired set of rows, change
SELECT * to read DELETE and execute it once more.
4-6 Informix Guide to SQL: Tutorial

Inserting Rows
The WHERE clause of a DELETE statement cannot use a subquery that tests
the same table. That is, when you delete from stock, you cannot use a
subquery in the WHERE clause that also selects from stock.

The key to this rule is in the FROM clause. If a table is named in the FROM
clause of a DELETE statement, it cannot also appear in the FROM clause of a
subquery of the DELETE statement.

Inserting Rows
The INSERT statement adds a new row, or rows, to a table. The statement has
two basic functions. It can create a single new row using column values you
supply, or it can create a group of new rows using data selected from other
tables.

Single Rows
In its simplest form, the INSERT statement creates one new row from a list of
column values and puts that row in the table. The following statement shows
how to add a row to the stock table:

INSERT INTO stock
VALUES (115, 'PRC', 'tire pump', 108, 'box', '6/box')

The stock table has the following columns:

■ stock_num (a number that identifies the type of merchandise)

■ manu_code (a foreign key to the manufact table)

■ description (a description of the merchandise)

■ unit_price (the unit price of the merchandise)

■ unit (of measure)

■ unit_descr (characterizes the unit of measure)

The values that are listed in the VALUES clause in the preceding example have
a one-to-one correspondence with the columns of the stock table. To write a
VALUES clause, you must know the columns of the tables as well as their
sequence from first to last.
Modifying Data 4-7

Single Rows
Possible Column Values

The VALUES clause accepts only constant values, not expressions. You can
supply the following values:

■ Literal numbers

■ Literal datetime values

■ Literal interval values

■ Quoted strings of characters

■ The word NULL for a null value

■ The word TODAY for the current date

■ The word CURRENT for the current date and time

■ The word USER for your user name

■ The word DBSERVERNAME (or SITENAME) for the name of the
computer where the database server is running

Some columns of a table might not allow null values. If you attempt to insert
NULL in such a column, the statement is rejected. Or a column in the table
might not permit duplicate values. If you specify a value that is a duplicate
of one that is already in such a column, the statement is rejected. Some
columns might even restrict the possible column values allowed. You use
data integrity constraints to restrict columns. For more information on data
integrity constraints, see “Data Integrity” on page 4-20.

Only one column in a table can have the SERIAL data type. The database
server generates values for a serial column. To make this happen when you
insert values, specify the value zero for the serial column. The database
server generates the next actual value in sequence. Serial columns do not
allow null values.

You can specify a nonzero value for a serial column (as long as it does not
duplicate any existing value in that column), and the database server uses the
value. However, that nonzero value might set a new starting point for values
that the database server generates. The next value the database server
generates for you is one greater than the maximum value in the column.

Do not specify the currency symbols for columns that contain money values.
Just specify the numeric value of the amount.
4-8 Informix Guide to SQL: Tutorial

Single Rows
The database server can convert between numeric and character data types.
You can give a string of numeric characters (for example, '-0075.6') as the
value of a numeric column. The database server converts the numeric string
to a number. An error occurs only if the string does not represent a number.

You can specify a number or a date as the value for a character column. The
database server converts that value to a character string. For example, if you
specify TODAY as the value for a character column, a character string that
represents the current date is used. (The DBDATE environment variable
specifies the format that is used.)

Listing Specific Column Names

You do not have to specify values for every column. Instead, you can list the
column names after the table name and then supply values for only those
columns that you named. The following example shows a statement that
inserts a new row into the stock table:

INSERT INTO stock (stock_num,description,unit_price,manu_code)
VALUES (115,'tyre pump',114,'SHM')

Only the data for the stock number, description, unit price, and manufacturer
code is provided. The database server supplies the following values for the
remaining columns:

■ It generates a serial number for an unlisted serial column.

■ It generates a default value for a column with a specific default
associated with it.

■ It generates a null value for any column that allows nulls but it does
not specify a default value for any column that specifies null as the
default value.

This means that you must list and supply values for all columns that
do not specify a default value or do not permit nulls.

You can list the columns in any order, as long as the values for those columns
are listed in the same order. For information about how to designate null or
default values for a column, see the Informix Guide to Database Design and
Implementation.
Modifying Data 4-9

Multiple Rows and Expressions
After the INSERT statement in the preceding example is executed, the
following new row is inserted into the stock table:

stock_num manu_code description unit_price unit unit_descr

115 SHM tyre pump 114

Both unit and unit_descr are blank, which indicates that null values exist in
those two columns. Because the unit column permits nulls, the number of tire
pumps that were purchased for $114 is not known. Of course, if a default
value of box were specified for this column, then box would be the unit of
measure. In any case, when you insert values into specific columns of a table,
pay attention to what data is needed for that row.

Multiple Rows and Expressions
The other major form of the INSERT statement replaces the VALUES clause
with a SELECT statement. This feature allows you to insert the following data:

■ Multiple rows with only one statement (each time the SELECT
statement returns a row, a row is inserted)

■ Calculated values (the VALUES clause permits only constants)
because the select list can contain expressions

For example, suppose a follow-up call is required for every order that has
been paid for but not shipped. The INSERT statement in the following
example finds those orders and inserts a row in cust_calls for each order:

INSERT INTO cust_calls (customer_num, call_descr)
SELECT customer_num, order_num FROM orders

WHERE paid_date IS NOT NULL
AND ship_date IS NULL

This SELECT statement returns two columns. The data from these columns (in
each selected row) is inserted into the named columns of the cust_calls table.
Then, an order number (from order_num, a serial column) is inserted into the
call description, which is a character column. Remember that the database
server allows you to insert integer values into a character column. It
automatically converts the serial number to a character string of decimal
digits.
4-10 Informix Guide to SQL: Tutorial

Restrictions on the Insert Selection
Restrictions on the Insert Selection
The following list contains the restrictions on the SELECT statement for
inserting rows:

■ It cannot contain an INTO clause.

■ It cannot contain an INTO TEMP clause.

■ It cannot contain an ORDER BY clause.

■ It cannot refer to the table into which you are inserting rows.

With Informix Dynamic Server with Advanced Decision Support and
Extended Parallel Options, a SELECT statement can contain an ORDER BY
clause in an INSERT SELECT statement. ♦

The INTO, INTO TEMP, and ORDER BY clause restrictions are minor. The INTO
clause is not useful in this context. (It is discussed in Chapter 5,
“Programming with SQL.”) To work around the INTO TEMP clause
restriction, first select the data you want to insert into a temporary table and
then insert the data from the temporary table with the INSERT statement.
Likewise, the lack of an ORDER BY clause is not important. If you need to
ensure that the new rows are physically ordered in the table, you can first
select them into a temporary table and order it, and then insert from the
temporary table. You can also apply a physical order to the table using a
clustered index after all insertions are done.

The last restriction is more serious because it prevents you from naming the
same table in both the INTO clause of the INSERT statement and the FROM
clause of the SELECT statement. Naming the same table in both the INTO
clause of the INSERT statement and the FROM clause of the SELECT statement
causes the database server to enter an endless loop in which each inserted
row is reselected and reinserted.

In some cases, however, you might want to select from the same table into
which you must insert data. For example, suppose that you have learned that
the Nikolus company supplies the same products as the Anza company, but
at half the price. You want to add rows to the stock table to reflect the
difference between the two companies. Optimally, you want to select data
from all the Anza stock rows and reinsert it with the Nikolus manufacturer
code. However, you cannot select from the same table into which you are
inserting.

AD/XP
Modifying Data 4-11

Updating Rows
To get around this restriction, select the data you want to insert into a
temporary table. Then select from that temporary table in the INSERT
statement as the following example shows:

SELECT stock_num, 'NIK' temp_manu, description, unit_price/2
half_price, unit, unit_descr FROM stock

WHERE manu_code = 'ANZ'
AND stock_num < 110

INTO TEMP anzrows;

INSERT INTO stock SELECT * FROM anzrows;

DROP TABLE anzrows;

This SELECT statement takes existing rows from stock and substitutes a
literal value for the manufacturer code and a computed value for the unit
price. These rows are then saved in a temporary table, anzrows, which is
immediately inserted into the stock table.

When you insert multiple rows, a risk exists that one of the rows contains
invalid data that might cause the database server to report an error. When
such an error occurs, the statement terminates early. Even if no error occurs,
a very small risk exists that a hardware or software failure might occur while
the statement is executing (for example, the disk might fill up).

In either event, you cannot easily tell how many new rows were inserted. If
you repeat the statement in its entirety, you might create duplicate rows, or
you might not. Because the database is in an unknown state, you cannot
know what to do. The answer lies in using transactions, as discussed in
“Interrupted Modifications” on page 4-28.

Updating Rows
You use the UPDATE statement to change the contents of one or more
columns in one or more existing rows of a table. This statement takes two
fundamentally different forms. One lets you assign specific values to
columns by name; the other lets you assign a list of values (that might be
returned by a SELECT statement) to a list of columns. In either case, if you are
updating rows, and some of the columns have data integrity constraints, the
data you change must be within the constraints placed on those columns. For
more information on data integrity constraints, refer to “Data Integrity” on
page 4-20.
4-12 Informix Guide to SQL: Tutorial

Selecting Rows to Update
Selecting Rows to Update
Either form of the UPDATE statement can end with a WHERE clause that
determines which rows are modified. If you omit the WHERE clause, all rows
are modified. The WHERE clause can be quite complicated to select the
precise set of rows that need changing. The only restriction on the WHERE
clause is that the table that you update cannot be named in the FROM clause
of a subquery.

The first form of an UPDATE statement uses a series of assignment clauses to
specify new column values, as the following example shows:

UPDATE customer
SET fname = 'Barnaby', lname = 'Dorfler'
WHERE customer_num = 103

The WHERE clause selects the row you want to update. In the demonstration
database, the customer.customer_num column is the primary key for that
table, so this statement can update no more than one row.

You can also use subqueries in the WHERE clause. Suppose that the Anza
Corporation issues a safety recall of their tennis balls. As a result, any
unshipped orders that include stock number 6 from manufacturer ANZ must
be put on back order, as the following example shows:

UPDATE orders
SET backlog = 'y'
WHERE ship_date IS NULL
AND order_num IN

(SELECT DISTINCT items.order_num FROM items
WHERE items.stock_num = 6
AND items.manu_code = 'ANZ')

This subquery returns a column of order numbers (zero or more). The
UPDATE operation then tests each row of orders against the list and performs
the update if that row matches.
Modifying Data 4-13

Updating with Uniform Values
Updating with Uniform Values
Each assignment after the keyword SET specifies a new value for a column.
That value is applied uniformly to every row that you update. In the
examples in the previous section, the new values were constants, but you can
assign any expression, including one based on the column value itself.
Suppose the manufacturer code HRO has raised all prices by 5 percent, and
you must update the stock table to reflect this increase. Use a statement such
as the following:

UPDATE stock
SET unit_price = unit_price * 1.05
WHERE manu_code = 'HRO'

You can also use a subquery as part of the assigned value. When a subquery
is used as an element of an expression, it must return exactly one value (one
column and one row). Perhaps you decide that for any stock number, you
must charge a higher price than any manufacturer of that product. You need
to update the prices of all unshipped orders. The SELECT statements in the
following example specify the criteria:

UPDATE items
SET total_price = quantity *

(SELECT MAX (unit_price) FROM stock
WHERE stock.stock_num = items.stock_num)

WHERE items.order_num IN
(SELECT order_num FROM orders

WHERE ship_date IS NULL)

The first SELECT statement returns a single value: the highest price in the
stock table for a particular product. The first SELECT statement is a correlated
subquery because, when a value from items appears in the WHERE clause for
the first SELECT statement, you must execute it for every row that you
update.

The second SELECT statement produces a list of the order numbers of
unshipped orders. It is an uncorrelated subquery that is executed once.
4-14 Informix Guide to SQL: Tutorial

Restrictions on Updates
Restrictions on Updates
Restrictions exist on the use of subqueries when you modify data. In
particular, you cannot query the table that is being modified. You can refer to
the present value of a column in an expression, as in the example that incre-
ments the unit_price column by 5 percent. You can also refer to a value of a
column in a WHERE clause in a subquery, as in the example that updated the
stock table, in which the items table is updated and items.stock_num is used
in a join expression.

With Dynamic Server with AD and XP Options, you cannot use a subquery in
the SET clause of an UPDATE statement. ♦

The need to update and query a table at the same time does not occur often
in a well-designed database. (For complete information about database
design, see the Informix Guide to Database Design and Implementation.)
However, you might want to update and query at the same time when a
database is first being developed, before its design has been carefully thought
through. A typical problem arises when a table inadvertently and incorrectly
contains a few rows with duplicate values in a column that should be unique.
You might want to delete the duplicate rows or update only the duplicate
rows. Either way, a test for duplicate rows inevitably requires a subquery on
the same table that you want to modify, which is not allowed in an UPDATE
statement or DELETE statement. Chapter 6, “Modifying Data Through SQL
Programs,” discusses how to use an update cursor to perform this kind of
modification.

Updating with Selected Values
The second form of UPDATE statement replaces the list of assignments with
a single bulk assignment, in which a list of columns is set equal to a list of
values. When the values are simple constants, this form is nothing more than
the form of the previous example with its parts rearranged, as the following
example shows:

UPDATE customer
SET (fname, lname) = ('Barnaby', 'Dorfler')
WHERE customer_num = 103

No advantage exists to writing the statement this way. In fact, it is harder to
read because it is not obvious which values are assigned to which columns.

AD/XP
Modifying Data 4-15

Using a CASE Expression to Update a Column
However, when the values to be assigned come from a single SELECT
statement, this form makes sense. Suppose that changes of address are to be
applied to several customers. Instead of updating the customer table each
time a change is reported, the new addresses are collected in a single
temporary table named newaddr. It contains columns for the customer
number and the address-related fields of the customer table. Now the time
comes to apply all the new addresses at once.

UPDATE customer
SET (address1, address2, city, state, zipcode) =

((SELECT address1, address2, city, state, zipcode
FROM newaddr
WHERE newaddr.customer_num=customer.customer_num))

WHERE customer_num IN
(SELECT customer_num FROM newaddr)

The values for multiple columns are produced by a single SELECT statement.
If you rewrite this example in the other form, with an assignment for each
updated column, you must write five SELECT statements, one for each
column to be updated. Not only is such a statement harder to write but it also
takes much longer to execute.

Tip: In SQL API programs, you can use record or host variables to update values.
For more information, refer to Chapter 5, “Programming with SQL.”

Using a CASE Expression to Update a Column
The CASE expression allows a statement to return one of several possible
results, depending on which of several condition tests evaluates to TRUE.

The following example shows how to use a CASE statement in an UPDATE
statement to increase the unit price of certain items in the stock table:

UPDATE stock
SET unit_price = CASE

WHEN stock_num = 1
 AND manu_code = "HRO"
THEN unit_price = unit_price * 1.2
WHEN stock_num = 1
 AND manu_code = "SMT"
THEN unit_price = unit_price * 1.1
ELSE 0

 END
4-16 Informix Guide to SQL: Tutorial

Using a Join to Update a Column
You must include at least one WHEN clause within the CASE expression;
subsequent WHEN clauses and the ELSE clause are optional. If no WHEN
condition evaluates to true, the resulting value is null.

Using a Join to Update a Column
Dynamic Server with AD and XP Options allows you to use a join on tables to
determine which columns to update. You can use columns from any table
that you list in the FROM clause in the SET clause to specify values for the
columns and rows to update.

When you use the FROM clause, you must include the name of the table in
which the update is to be performed. Otherwise, an error results. The
following example illustrates how you can use the UPDATE statement with a
FROM clause:

UPDATE t SET a = t2.a FROM t, t2 WHERE t.b = t2.b

In the preceding example, the statement performs the same action as it does
when you omit the FROM clause altogether. You are allowed to specify more
than one table in the FROM clause of the UPDATE statement. However, if you
specify only one table, it must be the target table.

Privileges on a Database
You can use the following database privileges to control who accesses a
database:

■ Database-level privileges

■ Table-level privileges

■ Column-level privileges

■ Procedure-level privileges

This section briefly describes the database- and table-level privileges. For
complete information about database privileges, see the Informix Guide to
Database Design and Implementation. For a list of privileges and a description
of the GRANT and REVOKE statements, see the Informix Guide to SQL: Syntax.

AD/XP
Modifying Data 4-17

Database-Level Privileges
Database-Level Privileges
When you create a database, you are the only one who can access it until you,
as the owner or database administrator (DBA) of the database, grant
database-level privileges to others. The following table shows the database-
level privileges.

Table-Level Privileges
When you create a table in a database that is not ANSI compliant, all users
have access privileges to the table until you, as the owner of the table, revoke
table-level privileges from specific users. The following table introduces the
four privileges that govern how users can access a table.

The people who create databases and tables often grant the Connect and
Select privileges to public so that all users have them. If you can query a
table, you have at least the Connect and Select privileges for that database
and table.

Privilege Purpose

Connect Allows you to open a database, issue queries, and create
and place indexes on temporary tables.

Resource Allows you to create permanent tables.

DBA Allows you to perform several additional functions as the
DBA.

Privilege Purpose

Select Granted on a table-by-table basis and allows you to select
rows from a table. (This privilege can be limited to specific
columns in a table.)

Delete Allows you to delete rows.

Insert Allows you to insert rows.

Update Allows you to update existing rows (that is, to change
their content).
4-18 Informix Guide to SQL: Tutorial

Displaying Table Privileges
You need the other table-level privileges to modify data. The owners of tables
often withhold these privileges or grant them only to specific users. As a
result, you might not be able to modify some tables that you can query freely.

Because these privileges are granted on a table-by-table basis, you can have
only Insert privileges on one table and only Update privileges on another, for
example. The Update privileges can be restricted even further to specific
columns in a table.

For more information on these and other table-level privileges, see the
Informix Guide to Database Design and Implementation.

Displaying Table Privileges
If you are the owner of a table (that is, if you created it), you have all
privileges on that table. Otherwise, you can determine the privileges you
have for a certain table by querying the system catalog. The system catalog
consists of system tables that describe the database structure. The privileges
granted on each table are recorded in the systabauth system table. To display
these privileges, you must also know the unique identifier number of the
table. This number is specified in the systables system table. To display privi-
leges granted on the orders table, you might enter the following SELECT
statement:

SELECT * FROM systabauth
WHERE tabid = (SELECT tabid FROM systables

WHERE tabname = 'orders')

The output of the query resembles the following example.

The grantor is the user who grants the privilege. The grantor is usually the
owner of the table but can be another user empowered by the grantor. The
grantee is the user to whom the privilege is granted, and the grantee public
means “any user with Connect privilege.” If your user name does not appear,
you have only those privileges granted to public.

grantorgranteetabidtabauth

tfecitmutator101su-i-x--
tfecitprocrustes101s--idx--
tfecitpublic101s--i-x--
Modifying Data 4-19

Data Integrity
The tabauth column specifies the privileges granted. The letters in each row
of this column are the initial letters of the privilege names except that i means
Insert and x means Index. In this example, public has Select, Insert, and
Index privileges. Only the user mutator has Update privileges, and only the
user procrustes has Delete privileges.

Before the database server performs any action for you (for example,
execution of a DELETE statement), it performs a query similar to the
preceding one. If you are not the owner of the table, and if the database server
cannot find the necessary privilege on the table for your user name or for
public, it refuses to perform the operation.

Data Integrity
The INSERT, UPDATE, and DELETE statements modify data in an existing
database. Whenever you modify existing data, the integrity of the data can be
affected. For example, an order for a nonexistent product could be entered
into the orders table, a customer with outstanding orders could be deleted
from the customer table, or the order number could be updated in the orders
table and not in the items table. In each of these cases, the integrity of the
stored data is lost.

Data integrity is actually made up of the following parts:

■ Entity integrity

Each row of a table has a unique identifier.

■ Semantic integrity

The data in the columns properly reflects the types of information
the column was designed to hold.

■ Referential integrity

The relationships between tables are enforced.

Well-designed databases incorporate these principles so that when you
modify data, the database itself prevents you from doing anything that might
harm the integrity of the data.
4-20 Informix Guide to SQL: Tutorial

Entity Integrity
Entity Integrity
An entity is any person, place, or thing to be recorded in a database. Each
table represents an entity, and each row of a table represents an instance of
that entity. For example, if order is an entity, the orders table represents the
idea of an order and each row in the table represents a specific order.

To identify each row in a table, the table must have a primary key. The
primary key is a unique value that identifies each row. This requirement is
called the entity integrity constraint.

For example, the orders table primary key is order_num. The order_num
column holds a unique system-generated order number for each row in the
table. To access a row of data in the orders table, you can use the following
SELECT statement:

SELECT * FROM orders WHERE order_num = 1001

Using the order number in the WHERE clause of this statement enables you
to access a row easily because the order number uniquely identifies that row.
If the table allowed duplicate order numbers, it would be almost impossible
to access one single row, because all other columns of this table allow
duplicate values.

For more information on primary keys and entity integrity, see the Informix
Guide to Database Design and Implementation.

Semantic Integrity
Semantic integrity ensures that data entered into a row reflects an allowable
value for that row. The value must be within the domain, or allowable set of
values, for that column. For example, the quantity column of the items table
permits only numbers. If a value outside the domain can be entered into a
column, the semantic integrity of the data is violated.
Modifying Data 4-21

Referential Integrity
The following constraints enforce semantic integrity:

■ Data type

The data type defines the types of values that you can store in a
column. For example, the data type SMALLINT allows you to enter
values from -32,767 to 32,767 into a column.

■ Default value

The default value is the value inserted into the column when an
explicit value is not specified. For example, the user_id column of the
cust_calls table defaults to the login name of the user if no name is
entered.

■ Check constraint

The check constraint specifies conditions on data inserted into a
column. Each row inserted into a table must meet these conditions.
For example, the quantity column of the items table might check for
quantities greater than or equal to one.

For more information on how to use semantic integrity constraints in
database design, see the Informix Guide to Database Design and
Implementation.

Referential Integrity
Referential integrity refers to the relationship between tables. Because each
table in a database must have a primary key, this primary key can appear in
other tables because of its relationship to data within those tables. When a
primary key from one table appears in another table, it is called a foreign key.

Foreign keys join tables and establish dependencies between tables. Tables
can form a hierarchy of dependencies in such a way that if you change or
delete a row in one table, you destroy the meaning of rows in other tables. For
example, Figure 4-1 shows that the customer_num column of the customer
table is a primary key for that table and a foreign key in the orders and
cust_call tables. Customer number 106, George Watson, is referenced in both
the orders and cust_calls tables. If customer 106 is deleted from the customer
table, the link between the three tables and this particular customer is
destroyed.
4-22 Informix Guide to SQL: Tutorial

Referential Integrity
When you delete a row that contains a primary key or update it with a
different primary key, you destroy the meaning of any rows that contain that
value as a foreign key. Referential integrity is the logical dependency of a
foreign key on a primary key. The integrity of a row that contains a foreign key
depends on the integrity of the row that it references—the row that contains
the matching primary key.

Figure 4-1
Referential Integrity in the Demonstration Database

106 George Watson

103 Philip Currie

customer_num fname lname

1003 05/22/1998 104

1004 05/22/1998 106

1002 05/21/1998 101

order_num order_date customer_num

customer table
(detail)

orders table
(detail)

cust_calls table
(detail)

110 1998-07-07 10:24 richc

119 1998-07-01 15:00 richc

106 1998-06-12 8:20 maryj

customer_num call_dtime user_id
Modifying Data 4-23

Referential Integrity
By default, the database server does not allow you to violate referential
integrity and gives you an error message if you attempt to delete rows from
the parent table before you delete rows from the child table. You can,
however, use the ON DELETE CASCADE option to cause deletes from a parent
table to trip deletes on child tables. See “Using the ON DELETE CASCADE
Option” on page 4-24.

To define primary and foreign keys, and the relationship between them, use
the CREATE TABLE and ALTER TABLE statements. For more information on
these statements, see the Informix Guide to SQL: Syntax. For information about
how to build a data model with primary and foreign keys, see the Informix
Guide to Database Design and Implementation.

Using the ON DELETE CASCADE Option

To maintain referential integrity when you delete rows from a primary key
for a table, use the ON DELETE CASCADE option in the REFERENCES clause of
the CREATE TABLE and ALTER TABLE statements. This option allows you to
delete a row from a parent table and its corresponding rows in matching
child tables with a single delete command.

Locking During Cascading Deletes

During deletes, locks are held on all qualifying rows of the parent and child
tables. When you specify a delete, the delete that is requested from the parent
table occurs before any referential actions are performed.

What Happens to Multiple Children Tables

If you have a parent table with two child constraints, one child with
cascading deletes specified and one child without cascading deletes, and you
attempt to delete a row from the parent table that applies to both child tables,
the DELETE statement fails, and no rows are deleted from either the parent or
child tables.

Logging Must Be Turned On

You must turn logging on in your current database for cascading deletes to
work. Logging and cascading deletes are discussed in “Transaction Logging”
on page 4-30.
4-24 Informix Guide to SQL: Tutorial

Referential Integrity
Example of Cascading Deletes

Suppose you have two tables with referential integrity rules applied, a parent
table, accounts, and a child table, sub_accounts. The following CREATE
TABLE statements define the referential constraints:

CREATE TABLE accounts (
 acc_num SERIAL primary key,
 acc_type INT,
 acc_descr CHAR(20));

CREATE TABLE sub_accounts (
 sub_acc INTEGER primary key,
 ref_num INTEGER REFERENCES accounts (acc_num) ON DELETE CASCADE,
 sub_descr CHAR(20));

The primary key of the accounts table, the acc_num column, uses a SERIAL
data type, and the foreign key of the sub_accounts table, the ref_num
column, uses an INTEGER data type. Combining the SERIAL data type on the
primary key and the INTEGER data type on the foreign key is allowed. Only
in this condition can you mix and match data types. The SERIAL data type is
an INTEGER, and the database automatically generates the values for the
column. All other primary and foreign key combinations must match
explicitly. For example, a primary key that is defined as CHAR must match a
foreign key that is defined as CHAR.

The definition of the foreign key of the sub_accounts table, the ref_num
column, includes the ON DELETE CASCADE option. This option specifies that
a delete of any row in the parent table accounts will automatically cause the
corresponding rows of the child table sub_accounts to be deleted.

To delete a row from the accounts table that will cascade a delete to the
sub_accounts table, you must turn on logging. After logging is turned on,
you can delete the account number 2 from both tables, as the following
example shows:

DELETE FROM accounts WHERE acc_num = 2
Modifying Data 4-25

Object Modes and Violation Detection
Restrictions on Cascading Deletes

You can use cascading deletes for most deletes, including deletes on self-
referencing and cyclic queries. The only exception is correlated subqueries. In
correlated subqueries, the subquery (or inner SELECT) is correlated when the
value it produces depends on a value produced by the outer SELECT
statement that contains it. If you have implemented cascading deletes, you
cannot write deletes that use a child table in the correlated subquery. You
receive an error when you attempt to delete from a correlated subquery.

Object Modes and Violation Detection
Dynamic Server with AD and XP Options does not support the violations
table or the enabled, disabled, and filtering object modes. ♦

The object modes and violation detection features of the database can help
you monitor data integrity. These features are particularly powerful when
they are combined during schema changes or when insert, delete, and update
operations are performed on large volumes of data over short periods.

You can use the object modes feature to change the modes of database objects.
Database objects, within the context of a discussion of the object modes
feature, are constraints, indexes, and triggers. Do not confuse database
objects that are relevant to the object modes feature with generic database
objects. Generic database objects are things like tables and synonyms. The
database objects that relate specifically to object modes are constraints,
indexes, and triggers and all of them have different modes.

Object Modes for Constraints

Constraints can have enabled, disabled, or filtering modes. The database
manager does not enforce disabled constraints even though their definitions
are still in the system catalog tables. Only constraints in the enabled and
filtering mode are enforced. However, when a constraint is in filter mode, the
database manager ensures the integrity of the base table for that particular
constraint. The difference between enabled mode and filtering mode is
apparent in the way the database manager handles a query that poses a
violation of the constraint. The database manager uses the violation-
detection feature when it deals with a constraint violation.

AD/XP
4-26 Informix Guide to SQL: Tutorial

Object Modes and Violation Detection
Consider an insert statement that violates a constraint. Depending on the
mode of the constraint, the database manager handles the insert statement as
follows:

■ The constraint is enabled.

An insert operation that violates an enabled constraint is not inserted
into the target table. A constraint violation error is returned to the
user, and effects of the statement are rolled back.

■ The constraint is disabled.

An insert operation that violates a disabled constraint is inserted in
the target table, and no error is returned to the user.

■ The constraint is filtering.

An insert operation that violates a filtering constraint is not inserted
into the target table; instead it is inserted into the violations table.
The information about the integrity violation is created and stored in
a third table called the diagnostics table. The effects of the insert
operation are not rolled back. When you switch the mode of the
constraint to filtering, you can determine whether or not an error is
returned after a constraint is violated.

You can identify the reason for the failure when you analyze the information
in the violations and diagnostic tables. You can then take corrective action or
roll back the operation.

Object Modes for Unique Indexes

A unique index also has enabled, disabled, and filtering modes. A unique
index in filtering mode operates the same way as a constraint in filtering
mode. An index that does not avoid duplicate entries, however, only has
enabled and disabled modes. When an index is disabled, its contents are not
updated following insert, delete, or update modifications to the base table of
the index. The optimizer cannot use a disabled index during a query because
the index contents are not current.
Modifying Data 4-27

Interrupted Modifications
Object Modes for Triggers

Unlike constraints and unique indexes, triggers have two modes. Formerly, a
trigger either existed and was fired at the appropriate time by the database
manager, or nothing happened because the trigger did not exist. Now you
can use object modes to disable an existing trigger. The database manager
ignores a trigger in disabled mode even though the catalog information of the
disabled trigger is kept up to date. The database manager does not ignore a
trigger in enabled mode. Triggers do not have a filtering mode since they do
not impose any kind of integrity specification on the database.

Dynamic Server with AD and XP Options does not support SQL triggers. ♦

SQL Statements and Examples

For more information and examples, see the SET, START VIOLATIONS TABLE,
and STOP VIOLATIONS TABLE statements in the Informix Guide to SQL: Syntax.

Interrupted Modifications
Even if all the software is error-free, and all the hardware is utterly reliable,
the world outside the computer can interfere. Lightning might strike the
building, interrupting the electrical supply and stopping the computer in the
middle of your UPDATE statement. A more likely scenario occurs when a disk
fills up, or a user supplies incorrect data, causing your multirow insert to stop
early with an error. In any case, as you are modifying data, you must assume
that some unforeseen event can interrupt the modification.

When a modification is interrupted by an external cause, you cannot be sure
how much of the operation was completed. Even in a single-row operation,
you cannot know whether the data reached the disk or the indexes were
properly updated.

AD/XP
4-28 Informix Guide to SQL: Tutorial

Interrupted Modifications
If multirow modifications are a problem, multistatement modifications are
worse. They are usually embedded in programs so you do not see the
individual SQL statements being executed. For example, to enter a new order
in the demonstration database, you perform the following steps:

■ Insert a row in the orders table. (This insert generates an order
number.)

■ For each item ordered, insert a row in the items table.

Two ways to program an order-entry application exist. One way is to make it
completely interactive so that the program inserts the first row immediately,
and then inserts each item as the user enters data. But this approach exposes
the operation to the possibility of many more unforeseen events: the
customer’s telephone disconnecting, the user pressing the wrong key, the
user’s terminal or computer losing power, and so on.

The correct way to build an order-entry application is described in the
following list:

■ Accept all the data interactively.

■ Validate the data, and expand it (look up codes in stock and
manufact, for example).

■ Display the information on the screen for inspection.

■ Wait for the operator to make a final commitment.

■ Perform the insertions quickly.

Even with these steps, an unforeseen circumstance can halt the program after
it inserts the order but before it finishes inserting the items. If that happens,
the database is in an unpredictable condition: its data integrity is
compromised.
Modifying Data 4-29

Transactions
Transactions
The solution to all these potential problems is called the transaction. A
transaction is a sequence of modifications that must be accomplished either
completely or not at all. The database server guarantees that operations
performed within the bounds of a transaction are either completely and
perfectly committed to disk, or the database is restored to the same state as
before the transaction started.

The transaction is not merely protection against unforeseen failures; it also
offers a program a way to escape when the program detects a logical error.

Transaction Logging
The database server can keep a record of each change that it makes to the
database during a transaction. If something happens to cancel the trans-
action, the database server automatically uses the records to reverse the
changes. Many things can make a transaction fail. For example, the program
that issues the SQL statements can crash or be terminated. As soon as the
database server discovers that the transaction failed, which might be only
after the computer and the database server are restarted, it uses the records
from the transaction to return the database to the same state as before.

The process of keeping records of transactions is called transaction logging or
simply logging. The records of the transactions, called log records, are stored in
a portion of disk space separate from the database. This space is called the
logical log because the log records represent logical units of the transactions.

Only Dynamic Server with AD and XP Options databases generate trans-
action records automatically. ♦

Most Informix databases do not generate transaction records automatically.
The database administrator decides whether to make a database use trans-
action logging. Without transaction logging, you cannot roll back
transactions.

AD/XP
4-30 Informix Guide to SQL: Tutorial

Transaction Logging
Transaction Logging for Informix Dynamic Server with AD/XP Options

In addition to logical-log files, Dynamic Server with AD and XP Options
allows you to create logslices. A logslice is a set of log files that occupy a
dbslice. These log files are owned by multiple coservers, one log file per
dbspace. Logslices simplify the process of adding and deleting log files
because a logslice treats a set of log files as a single entity. For more infor-
mation about logslices, see your Administrator’s Guide.

Dynamic Server with AD and XP Options databases must be logged
databases and logging cannot be turned off. However, you can specify that
individual tables are logging or nonlogging tables. To meet the need for both
logging and nonlogging tables, Dynamic Server with AD and XP Options
supports the following types of permanent tables and temporary tables:

■ Raw permanent tables (nonlogging)

■ Static permanent tables (nonlogging)

■ Operational permanent tables (logging)

■ Standard permanent tables (logging)

■ Scratch temporary tables (nonlogging)

■ Temp temporary tables (logging)

For more information about the table types that Dynamic Server with AD and
XP Options supports, see the Informix Guide to Database Design and
Implementation.

Logging and Cascading Deletes

Logging must be turned on in your database for cascading deletes to work
because, when you specify a cascading delete, the delete is first performed on
the primary key of the parent table. If the system crashes after the rows of the
primary key of the parent table are performed but before the rows of the
foreign key of the child table are deleted, referential integrity is violated. If
logging is turned off, even temporarily, deletes do not cascade. After logging
is turned back on, however, deletes can cascade again.

AD/XP
Modifying Data 4-31

Specifying Transactions
With Dynamic Server, you turn logging on with the WITH LOG clause in the
CREATE DATABASE statement. ♦

Databases that you create with Dynamic Server with AD and XP Options are
always logging databases whether or not you include a WITH LOG clause in
the CREATE DATABASE statement ♦

Specifying Transactions
You can use two methods to specify the boundaries of transactions with SQL
statements. In the most common method, you specify the start of a multi-
statement transaction by executing the BEGIN WORK statement. In databases
that are created with the MODE ANSI option, no need exists to mark the
beginning of a transaction. One is always in effect; you indicate only the end
of each transaction.

In both methods, to specify the end of a successful transaction, execute the
COMMIT WORK statement. This statement tells the database server that you
reached the end of a series of statements that must succeed together. The
database server does whatever is necessary to make sure that all
modifications are properly completed and committed to disk.

A program can also cancel a transaction deliberately by executing the
ROLLBACK WORK statement. This statement asks the database server to
cancel the current transaction and undo any changes.

An order-entry application can use a transaction in the following ways when
it creates a new order:

■ Accept all data interactively

■ Validate and expand it

■ Wait for the operator to make a final commitment

■ Execute BEGIN WORK

■ Insert rows in the orders and items tables, checking the error code
that the database server returns

■ If no errors occurred, execute COMMIT WORK; otherwise execute
ROLLBACK WORK

IDS

AD/XP
4-32 Informix Guide to SQL: Tutorial

Backups and Logs with Informix Database Servers
If any external failure prevents the transaction from being completed, the
partial transaction rolls back when the system restarts. In all cases, the
database is in a predictable state. Either the new order is completely entered,
or it is not entered at all.

Backups and Logs with Informix Database Servers
By using transactions, you can ensure that the database is always in a
consistent state and that your modifications are properly recorded on disk.
But the disk itself is not perfectly safe. It is vulnerable to mechanical failures
and to flood, fire, and earthquake. The only safeguard is to keep multiple
copies of the data. These redundant copies are called backup copies.

The transaction log (also called the logical log) complements the backup copy
of a database. Its contents are a history of all modifications that occurred since
the last time the database was backed up. If you ever need to restore the
database from the backup copy, you can use the transaction log to roll the
database forward to its most recent state.

The database server contains elaborate features to support backups and
logging. Your database server archive and backup guide describes these
features.

The database server has very stringent requirements for performance and
reliability (for example, it supports making backup copies while databases
are in use).

The database server manages its own disk space, which is devoted to
logging.

The database server performs logging concurrently for all databases using a
limited set of log files. The log files can be copied to another medium (backed
up) while transactions are active.

Database users never have to be concerned with these facilities because the
database-server administrator usually manages them from a central location.
Modifying Data 4-33

Concurrency and Locks
With Dynamic Server, you can use the onunload utility to make a personal
backup copy of a single database or table. This program copies a table or a
database to tape. Its output consists of binary images of the disk pages as they
were stored in the database server. As a result, the copy can be made very
quickly, and the corresponding onload program can restore the file quickly.
However, the data format is not meaningful to any other programs. ♦

Dynamic Server with AD and XP Options does not support the onload and
onunload utilities. To load or unload data, the database server uses external
tables. For information about how to use external tables to load data, see your
Administrator’s Guide. ♦

If your database-server administrator uses ON-Bar to create backups and
back up logical logs, you might also be able to create your own backup copies
using ON-Bar. For more information, see your Backup and Restore Guide.

Concurrency and Locks
If your database is contained in a single-user workstation, without a network
connecting it to other computers, concurrency is unimportant. In all other
cases, you must allow for the possibility that, while your program is
modifying data, another program is also reading or modifying the same data.
Concurrency involves two or more independent uses of the same data at the
same time.

A high level of concurrency is crucial to good performance in a multiuser
database system. Unless controls exist on the use of data, however, concur-
rency can lead to a variety of negative effects. Programs could read obsolete
data; modifications could be lost even though it seems they were entered
successfully.

To prevent errors of this kind, the database server imposes a system of locks.
A lock is a claim, or reservation, that a program can place on a piece of data.
The database server guarantees that, as long as the data is locked, no other
program can modify it. When another program requests the data, the
database server either makes the program wait or turns it back with an error.

IDS

AD/XP
4-34 Informix Guide to SQL: Tutorial

Data Replication
You use a combination of SQL statements to control the effect that locks have
on your data access: SET LOCK MODE and either SET ISOLATION or SET
TRANSACTION. You can understand the details of these statements after
reading a discussion on the use of cursors from within programs. Cursors are
covered in Chapter 5, “Programming with SQL,” and Chapter 6, “Modifying
Data Through SQL Programs.” Also see Chapter 7, “Programming for a
Multiuser Environment,” for more information about locking and
concurrency.

Data Replication
Data replication, in the broadest sense of the term, means that database objects
have more than one representation at more than one distinct site. For
example, one way to replicate data, so that reports can be run against the data
without disturbing client applications that are using the original database, is
to copy the database to a database server on a different computer.

The following list describes the advantages of data replication:

■ Clients who access replicated data locally, as opposed to remote data
that is not replicated, experience improved performance because
they do not have to use network services.

■ Clients at all sites experience improved availability with replicated
data, because if local replicated data is unavailable, a copy of the data
is still available, albeit remotely.

Dynamic Server with AD and XP Options does not support data
replication. ♦

These advantages do not come without a cost. Data replication obviously
requires more storage for replicated data than for unreplicated data, and
updating replicated data can take more processing time than updating a
single object.

AD/XP
Modifying Data 4-35

Informix Database Server Data Replication
Data replication can actually be implemented in the logic of client
applications, by explicitly specifying where data should be found or
updated. However, this method of achieving data replication is costly, error-
prone, and difficult to maintain. Instead, the concept of data replication is
often coupled with replication transparency. Replication transparency is
functionality built into a database server (instead of client applications) to
handle the details of locating and maintaining data replicas automatically.

Informix Database Server Data Replication
Within the broad framework of data replication, an Informix database server
implements nearly transparent data replication of entire database servers. All
the data managed by one Informix database server is replicated and dynam-
ically updated on another Informix database server, usually at a remote site.
Data replication of an Informix database server is sometimes called hot site
backup, because it provides a means of maintaining a backup copy of the
entire database server that can be used quickly in the event of a catastrophic
failure.

Because the database server provides replication transparency, you generally
do not need to be concerned with or aware of data replication; the database
server administrator takes care of it. However, if your organization decides
to use data replication, you should be aware that special connectivity consid-
erations exist for client applications in a data replication environment. These
considerations are described in your Administrator’s Guide.

The Informix Enterprise Replication feature provides a different method of
data replication. For information on this feature, see the Guide to Informix
Enterprise Replication.

Dynamic Server with AD and XP Options does not support the Enterprise
Replication feature. ♦

AD/XP
4-36 Informix Guide to SQL: Tutorial

Summary
Summary
Database access is regulated by the privileges that the database owner grants
to you. The privileges that let you query data are often granted automatically,
but the ability to modify data is regulated by specific Insert, Delete, and
Update privileges that are granted on a table-by-table basis.

If data integrity constraints are imposed on the database, your ability to
modify data is restricted by those constraints. Your database- and table-level
privileges, along with any data constraints, control how and when you can
modify data. In addition, the object modes and violation detection features of
the database affect how you can modify data and help to preserve the
integrity of your data.

You can delete one or more rows from a table with the DELETE statement. Its
WHERE clause selects the rows; use a SELECT statement with the same clause
to preview the deletes.

Rows are added to a table with the INSERT statement. You can insert a single
row that contains specified column values, or you can insert a block of rows
that a SELECT statement generates.

You use the UPDATE statement to modify the contents of existing rows. You
specify the new contents with expressions that can include subqueries, so
that you can use data that is based on other tables or the updated table itself.
The statement has two forms. In the first form, you specify new values
column by column. In the second form, a SELECT statement or a record
variable generates a set of new values.

You use the REFERENCES clause of the CREATE TABLE and ALTER TABLE
statements to create relationships between tables. The ON DELETE CASCADE
option of the REFERENCES clause allows you to delete rows from parent and
associated child tables with one DELETE statement.
Modifying Data 4-37

Summary
You use transactions to prevent unforeseen interruptions in a modification
from leaving the database in an indeterminate state. When modifications are
performed within a transaction, they are rolled back after an error occurs. The
transaction log also extends the periodically made backup copy of the
database. If the database must be restored, it can be brought back to its most
recent state.

Data replication, which is transparent to users, offers another type of
protection from catastrophic failures.
4-38 Informix Guide to SQL: Tutorial

5
Chapter
Programming with SQL
SQL in Programs 5-4
SQL in SQL APIs 5-4
SQL in Application Languages 5-5
Static Embedding 5-5
Dynamic Statements 5-5
Program Variables and Host Variables 5-6

Calling the Database Server 5-8
SQL Communications Area 5-8
SQLCODE Field 5-9

End of Data 5-9
Negative Codes 5-10

SQLERRD Array 5-10
SQLWARN Array 5-11
SQLERRM Character Array 5-13
SQLSTATE Value 5-13

Retrieving Single Rows 5-14
Data-Type Conversion 5-15
Working with Null Data. 5-16
Dealing with Errors 5-17

End of Data 5-17
End of Data with Databases That Are Not ANSI Compliant . . 5-18
Serious Errors 5-18
Interpreting End of Data with Aggregate Functions 5-18
Using Default Values 5-19

Retrieving Multiple Rows 5-20
Declaring a Cursor 5-20
Opening a Cursor 5-21
Fetching Rows 5-22

Detecting End of Data 5-22

5-2 Infor
Locating the INTO Clause 5-23
Cursor Input Modes 5-23
Active Set of a Cursor. 5-24

Creating the Active Set 5-24
Active Set for a Sequential Cursor 5-25
Active Set for a Scroll Cursor 5-25
Active Set and Concurrency 5-26

Using a Cursor: A Parts Explosion 5-27

Dynamic SQL . 5-29
Preparing a Statement 5-30
Executing Prepared SQL. 5-31
Dynamic Host Variables 5-32
Freeing Prepared Statements 5-33
Quick Execution 5-33

Embedding Data-Definition Statements 5-34

Embedding Grant and Revoke Privileges 5-34

Summary . 5-37
mix Guide to SQL: Tutorial

In the examples in the previous chapters, SQL is treated as if it were an
interactive computer language; that is, as if you could type a SELECT
statement directly into the database server and see rows of data rolling back
to you.

Of course, that is not the case. Many layers of software stand between you
and the database server. The database server retains data in a binary form
that must be formatted before it can be displayed. It does not return a mass
of data at once; it returns one row at a time, as a program requests it.

You can access information in your database in several ways:

■ Through interactive access with DB-Access or Relational Object
Manager

■ Through application programs written with an SQL API such as
ESQL/C

■ Through an application language such as Stored Procedure
Language (SPL)

Almost any program can contain SQL statements, execute them, and retrieve
data from a database server. This chapter explains how these activities are
performed and indicates how you can write programs that perform them.

This chapter is only an introduction to the concepts that are common to SQL
programming in any language. Before you can write a successful program in
a particular programming language, you must first become fluent in that
language. Then, because the details of the process are different in every
language, you must become familiar with the manual for the Informix SQL
API specific to that language.
Programming with SQL 5-3

SQL in Programs
SQL in Programs
You can write a program in any of several languages and mix SQL statements
among the other statements of the program, just as if they were ordinary
statements of that programming language. These SQL statements are
embedded in the program, and the program contains embedded SQL, which
Informix often abbreviates as ESQL.

SQL in SQL APIs
ESQL products are Informix SQL APIs (application programming interfaces).
Informix produces an SQL API for the C programming language.

Figure 5-1 shows how an SQL API product works. You write a source program
in which you treat SQL statements as executable code. Your source program
is processed by an embedded SQL preprocessor, a program that locates the
embedded SQL statements and converts them into a series of procedure calls
and special data structures.

The converted source program then passes through the programming
language compiler. The compiler output becomes an executable program
after it is linked with a static or dynamic library of SQL API procedures. When
the program runs, the SQL API library procedures are called; they set up
communication with the database server to carry out the SQL operations.

Figure 5-1
Overview of Processing a Program with Embedded SQL Statements

ESQL source
program

ESQL
preprocessor

Source program
with procedure calls

Language
compiler

Executable
program
5-4 Informix Guide to SQL: Tutorial

SQL in Application Languages
If you link your executable program to a threading library package, you can
develop ESQL/C multithreaded applications. A multithreaded application can
have many threads of control. It separates a process into multiple execution
threads, each of which runs independently. The major advantage of a multi-
threaded ESQL/C application is that each thread can have many active
connections to a database server simultaneously. While a nonthreaded
ESQL/C application can establish many connections to one or more
databases, it can have only one connection active at a time. A multithreaded
ESQL/C application can have one active connection per thread and many
threads per application.

For more information on multithreaded applications, see the
INFORMIX-ESQL/C Programmer’s Manual.

SQL in Application Languages
Whereas an SQL API product allows you to embed SQL in the host language,
some languages include SQL as a natural part of their statement set. Informix
Stored Procedure Language (SPL) uses SQL as a natural part of its statement
set. You use an SQL API product to write application programs. You use SPL
to write procedures that are stored with a database and called from an appli-
cation program.

Static Embedding
You can introduce SQL statements into a program through static embedding
or dynamic statements. The simpler and more common way is by static
embedding, which means that the SQL statements are written as part of the
code. The statements are static because they are a fixed part of the source text.
For further information on static embedding, see “Retrieving Single Rows”
on page 5-14 and “Retrieving Multiple Rows” on page 5-20.

Dynamic Statements
Some applications require the ability to compose SQL statements dynamically,
in response to user input. For example, a program might have to select
different columns or apply different criteria to rows, depending on what the
user wants.
Programming with SQL 5-5

Program Variables and Host Variables
With dynamic SQL, the program composes an SQL statement as a string of
characters in memory and passes it to the database server to be executed.
Dynamic statements are not part of the code; they are constructed in memory
during execution.

For further information on dynamic SQL statements, see “Dynamic SQL” on
page 5-29.

Program Variables and Host Variables
Application programs can use program variables within SQL statements. In
SPL, you put the program variable in the SQL statement as syntax allows. For
example, a DELETE statement can use a program variable in its WHERE
clause.

The following code example shows a program variable in SPL:

CREATE PROCEDURE delete_item (drop_number INT)
.
.
.
DELETE FROM items WHERE order_num = drop_number
.
.
.

In applications that use embedded SQL statements, the SQL statements can
refer to the contents of program variables. A program variable that is named
in an embedded SQL statement is called a host variable because the SQL
statement is thought of as a guest in the program.

The following example shows a DELETE statement as it might appear when
it is embedded in an INFORMIX-ESQL/C source program:

EXEC SQL delete FROM items
WHERE order_num = :onum;

In this program, you see an ordinary DELETE statement, as described in
Chapter 4, “Modifying Data.” When the ESQL/C program is executed, a row
of the items table is deleted; multiple rows can also be deleted.

The statement contains one new feature. It compares the order_num column
to an item written as :onum, which is the name of a host variable.
5-6 Informix Guide to SQL: Tutorial

Program Variables and Host Variables
An SQL API product provides a way to delimit the names of host variables
when they appear in the context of an SQL statement. In ESQL/C, a host
variable can be introduced with either a dollar sign ($) or a colon (:). The
colon is the ANSI-compatible format. The example statement asks the
database server to delete rows in which the order number equals the current
contents of the host variable named :onum. This numeric variable was
declared and assigned a value earlier in the program.

In INFORMIX-ESQL/C, an SQL statement can be introduced with either a
leading dollar sign ($) or the words EXEC SQL.

The differences of syntax as illustrated in the preceding examples are trivial;
the essential point is that the SQL API and SPL languages let you perform the
following tasks:

■ Embed SQL statements in a source program as if they were
executable statements of the host language.

■ Use program variables in SQL expressions the way literal values are
used.

If you have programming experience, you can immediately see the
possibilities. In the example, the order number to be deleted is passed in the
variable onum. That value comes from any source that a program can use. It
can be read from a file, the program can prompt a user to enter it, or it can be
read from the database. The DELETE statement itself can be part of a
subroutine (in which case onum can be a parameter of the subroutine); the
subroutine can be called once or repetitively.

In short, when you embed SQL statements in a program, you can apply all the
power of the host language to them. You can hide the SQL statements under
many interfaces, and you can embellish the SQL functions in many ways.
Programming with SQL 5-7

Calling the Database Server
Calling the Database Server
Executing an SQL statement is essentially calling the database server as a
subroutine. Information must pass from the program to the database server,
and information must be returned from the database server to the program.

Some of this communication is done through host variables. You can think of
the host variables named in an SQL statement as the parameters of the
procedure call to the database server. In the preceding example, a host
variable acts as a parameter of the WHERE clause. Host variables receive data
that the database server returns, as described in “Retrieving Multiple Rows”
on page 5-20.

SQL Communications Area
The database server always returns a result code, and possibly other
information about the effect of an operation, in a data structure known as the
SQL Communications Area (SQLCA). If the database server executes an SQL
statement in a stored procedure, the SQLCA of the calling application
contains the values triggered by the SQL statement in the procedure.

The principal fields of the SQLCA are listed in Figure 5-2 through Figure 5-4.
The syntax that you use to describe a data structure such as the SQLCA, as
well as the syntax that you use to refer to a field in it, differs among
programming languages. For details, see your SQL API manual.

In particular, the subscript by which you name one element of the SQLERRD
and SQLWARN arrays differs. Array elements are numbered starting with
zero in INFORMIX-ESQL/C, but starting with one in other languages. In this
discussion, the fields are named with specific words such as third, and you
must translate these words into the syntax of your programming language.

You can also use the SQLSTATE variable of the GET DIAGNOSTICS statement
to detect, handle, and diagnose errors. See “SQLSTATE Value” on page 5-13.
5-8 Informix Guide to SQL: Tutorial

SQLCODE Field
SQLCODE Field
The SQLCODE field is the primary return code of the database server. After
every SQL statement, SQLCODE is set to an integer value as Figure 5-2 shows.
When that value is zero, the statement is performed without error. In
particular, when a statement is supposed to return data into a host variable,
a code of zero means that the data has been returned and can be used. Any
nonzero code means the opposite. No useful data was returned to host
variables.

Figure 5-2
Values of SQLCODE

End of Data

The database server sets SQLCODE to 100 when the statement is performed
correctly but no rows are found. This condition can occur in two situations.

The first situation involves a query that uses a cursor. (Queries that use
cursors are described under “Retrieving Multiple Rows” on page 5-20.) In
these queries, the FETCH statement retrieves each value from the active set
into memory. After the last row is retrieved, a subsequent FETCH statement
cannot return any data. When this condition occurs, the database server sets
SQLCODE to 100, which indicates end of data, no rows found.

Return value Interpretation

value < 0 Specifies an error code.

value = 0 Indicates success.

0 < value < 100 After a DESCRIBE statement, an integer value that represents the type of SQL
statement that is described.

100 After a successful query that returns no rows, indicates the NOT FOUND
condition. NOT FOUND can also occur in an ANSI-compliant database after an
INSERT INTO/SELECT, UPDATE, DELETE, or SELECT... INTO TEMP statement
fails to access any rows.
Programming with SQL 5-9

SQLERRD Array
The second situation involves a query that does not use a cursor. In this case,
the database server sets SQLCODE to 100 when no rows satisfy the query
condition. In databases that are not ANSI compliant, only a SELECT statement
that returns no rows causes SQLCODE to be set to 100.

In ANSI-compliant databases, SELECT, DELETE, UPDATE, and INSERT state-
ments all set SQLCODE to 100 if no rows are returned. ♦

Negative Codes

When something unexpected goes wrong during a statement, the database
server returns a negative number in SQLCODE to explain the problem. The
meanings of these codes are documented in the Informix Error Messages
manual and in the on-line error message file.

SQLERRD Array
Some error codes that can be reported in SQLCODE reflect general problems.
The database server can set a more detailed code in the second field of
SQLERRD that reveals the error encountered by the database server I/O
routines or by the operating system.

The integers in the SQLERRD array are set to different values following
different statements. The first and fourth elements of the array are used only
in INFORMIX-ESQL/C. Figure 5-3 shows how the fields are used.

These additional details can be very useful. For example, you can use the
value in the third field to report how many rows were deleted or updated.
When your program prepares an SQL statement that is entered by the user,
and an error is found, the value in the fifth field enables you to display the
exact point of error to the user. (DB-Access and Relational Object Manager
use this feature to position the cursor when you ask to modify a statement
after an error.)

ANSI
5-10 Informix Guide to SQL: Tutorial

SQLWARN Array
Figure 5-3
Fields of SQLERRD

SQLWARN Array
The eight character fields in the SQLWARN array are set to either a blank or to
W to indicate a variety of special conditions. Their meanings depend on the
statement just executed.

A set of warning flags appears when a database opens, that is, following a
CONNECT, DATABASE or CREATE DATABASE statement. These flags tell you
some characteristics of the database as a whole.

Field Interpretation

First After a successful PREPARE statement for a SELECT, UPDATE, INSERT, or DELETE
statement, or after a select cursor is opened, this field contains the estimated number of
rows affected

Second When SQLCODE contains an error code, this field contains either zero or an additional
error code, called the ISAM error code, that explains the cause of the main error.

After a successful insert operation of a single row, this field contains the value of any
SERIAL value generated for that row

Third After a successful multirow insert, update, or delete operation, this field contains the
number of rows that were processed.

After a multirow insert, update, or delete operation that ends with an error, this field
contains the number of rows that were successfully processed before the error was
detected.

Fourth After a successful PREPARE statement for a SELECT, UPDATE, INSERT, or DELETE
statement, or after a select cursor has been opened, this field contains the estimated
weighted sum of disk accesses and total rows processed.

Fifth After a syntax error in a PREPARE, EXECUTE IMMEDIATE, DECLARE, or static SQL
statement, this field contains the offset in the statement text where the error was detected.

Sixth After a successful fetch of a selected row, or a successful insert, update, or delete
operation, this field contains the rowid (physical address) of the last row that was
processed. Whether this rowid value corresponds to a row that the database server
returns to the user depends on how the database server processes a query, particularly
for SELECT statements.
Programming with SQL 5-11

SQLWARN Array
A second set of flags appears following any other statement. These flags
reflect unusual events that occur during the statement, which are usually not
serious enough to be reflected by SQLCODE.

Both sets of SQLWARN values are summarized in Figure 5-4.

Figure 5-4
Fields of SQLWARN

Field When Opening or Connecting to a Database: All Other Operations:

First Set to W when any other warning field is
set to W. If blank, others need not be
checked.

Set to W when any other warning field is set to
W.

Second Set to W when the database now open
uses a transaction log.

Set to W if a column value is truncated when it
is fetched into a host variable using a FETCH
or a SELECT...INTO statement. On a REVOKE
ALL statement, set to W when not all seven
table-level privileges are revoked.

Third Set to W when the database now open is
ANSI compliant.

Set to W when a FETCH or SELECT statement
returns an aggregate function (SUM, AVG,
MIN, MAX) value that is null.

Fourth Set to W when the database server is
Informix Dynamic Server with Universal
Data Option.

On a SELECT...INTO, FETCH...INTO, or
EXECUTE...INTO statement, set to W when the
number of items in the select list is not the
same as the number of host variables given in
the INTO clause to receive them. On a GRANT
ALL statement, set to W when not all seven
table-level privileges are granted.

Fifth Set to W when the database server stores
the FLOAT data type in DECIMAL form
(done when the host system lacks
support for FLOAT types).

Set to W after a DESCRIBE statement if the
prepared statement contains a DELETE
statement or an UPDATE statement without a
WHERE clause.

(1 of 2)
5-12 Informix Guide to SQL: Tutorial

SQLERRM Character Array
SQLERRM Character Array
The SQLERRM array is a 71-character array that contains the variable, such as
a table name, that is placed in the error message. For some networked appli-
cations, it contains an error message generated by networking software.

SQLSTATE Value
Certain Informix products, such as INFORMIX-ESQL/C, support the
SQLSTATE value in compliance with X/Open and ANSI SQL standards. The
GET DIAGNOSTICS statement reads the SQLSTATE value to diagnose errors
after you run an SQL statement. The database server returns a result code in
a five-character string that is stored in a variable called SQLSTATE. The
SQLSTATE error code, or value, tells you the following information about the
most recently executed SQL statement:

■ If the statement was successful

■ If the statement was successful but generated warnings

■ If the statement was successful but generated no data

■ If the statement failed

Sixth Set to W when the database server stores
the FLOAT data type in DECIMAL form
(done when the host system lacks
support for FLOAT types).

Set to W following execution of a statement
that does not use ANSI-standard SQL syntax
(provided the DBANSIWARN environment
variable is set).

Seventh Set to W when the application is
connected to a database server that is
running in secondary mode. The
database server is a secondary server in a
data-replication pair (that is, the server is
available only for read operations).

Set to W when a data fragment (a dbspace) has
been skipped during query processing (when
the DATASKIP feature is on).

Eighth Set toW when client DB_LOCALE does not
match the database locale. For more
information, see the Informix Guide to
GLS Functionality.

Reserved.

Field When Opening or Connecting to a Database: All Other Operations:

(2 of 2)
Programming with SQL 5-13

Retrieving Single Rows
For more information on the GET DIAGNOSTICS statement, the SQLSTATE
variable, and the meaning of the SQLSTATE return codes, see the GET
DIAGNOSTICS statement in the Informix Guide to SQL: Syntax.

Tip: If your Informix product supports GET DIAGNOSTICS and SQLSTATE, Infor-
mix recommends that you use them as the primary structure to detect, handle, and
diagnose errors. Using SQLSTATE allows you to detect multiple errors, and it is ANSI
compliant.

Retrieving Single Rows
You can use embedded SELECT statements to retrieve single rows from the
database into host variables. When a SELECT statement returns more than
one row of data, however, a program must use a more complicated method
to fetch the rows one at a time. Multiple-row select operations are discussed
in “Retrieving Multiple Rows” on page 5-20.

To retrieve a single row of data, simply embed a SELECT statement in your
program. The following example shows how you can write the embedded
SELECT statement using INFORMIX-ESQL/C:

EXEC SQL select avg (total_price)
into :avg_price
from items
where order_num in

(select order_num from orders
where order_date < date('6/1/94'));

The INTO clause is the only detail that distinguishes this statement from any
example in Chapter 2, “Composing Simple SELECT Statements,” or
Chapter 3, “Composing Advanced SELECT Statements.” This clause
specifies the host variables that are to receive the data that is produced.

When the program executes an embedded SELECT statement, the database
server performs the query. The example statement selects an aggregate value,
so that it produces exactly one row of data. The row has only a single column,
and its value is deposited in the host variable named avg_price. Subsequent
lines of the program can use that variable.
5-14 Informix Guide to SQL: Tutorial

Data-Type Conversion
You can use statements of this kind to retrieve single rows of data into host
variables. The single row can have as many columns as desired. If a query
produces more than one row of data, the database server cannot return any
data. It returns an error code instead.

You should list as many host variables in the INTO clause as there are items
in the select list. If, by accident, these lists are of different lengths, the
database server returns as many values as it can and sets the warning flag in
the fourth field of SQLWARN.

Data-Type Conversion
The following ESQL/C example retrieves the average of a DECIMAL column,
which is itself a DECIMAL value. However, the host variable into which the
average of the DECIMAL column is placed is not required to have that data
type.

EXEC SQL select avg (total_price) into :avg_price
from items;

The declaration of the receiving variable avg_price in the previous example
of ESQL/C code is not shown. The declaration could be any one of the
following definitions:

int avg_price;
double avg_price;
char avg_price[16];
dec_t avg_price; /* typedef of decimal number structure */

The data type of each host variable that is used in a statement is noted and
passed to the database server along with the statement. The database server
does its best to convert column data into the form that the receiving variables
use. Almost any conversion is allowed, although some conversions cause a
precision loss. The results of the preceding example differ, depending on the
data type of the receiving host variable, as the following table shows.
Programming with SQL 5-15

Working with Null Data
Working with Null Data
What if the program retrieves a null value? Null values can be stored in the
database, but the data types supported by programming languages do not
recognize a null state. A program must have some way to recognize a null
item to avoid processing it as data.

Indicator variables meet this need in SQL APIs. An indicator variable is an
additional variable that is associated with a host variable that might receive
a null item. When the database server puts data in the main variable, it also
puts a special value in the indicator variable to show whether the data is null.
In the following INFORMIX-ESQL/C example, a single row is selected, and a
single value is retrieved into the host variable op_date:

EXEC SQL select paid_date
into :op_date:op_d_ind
from orders
where order_num = $the_order;

if (op_d_ind < 0) /* data was null */
rstrdate ('01/01/1900', :op_date);

Data Type Result

FLOAT The database server converts the decimal result to FLOAT,
possibly truncating some fractional digits.

If the magnitude of a decimal exceeds the maximum magnitude
of the FLOAT format, an error is returned.

INTEGER The database server converts the result to INTEGER, truncating
fractional digits if necessary.

If the integer part of the converted number does not fit the
receiving variable, an error occurs.

CHARACTER The database server converts the decimal value to a
CHARACTER string.

If the string is too long for the receiving variable, it is truncated.
The second field of SQLWARN is set to W and the value in the
SQLSTATE variable is 01004.
5-16 Informix Guide to SQL: Tutorial

Dealing with Errors
Because the value might be null, an indicator variable named op_d_ind is
associated with the host variable. (It must be declared as a short integer
elsewhere in the program.)

Following execution of the SELECT statement, the program tests the indicator
variable for a negative value. A negative number (usually -1) means that the
value retrieved into the main variable is null. If the variable is null, this
program uses an ESQL/C library function to assign a default value to the host
variable. (The function rstrdate is part of the INFORMIX-ESQL/C product.)

The syntax that you use to associate an indicator variable with a host variable
differs with the language you are using, but the principle is the same in all
languages.

Dealing with Errors
Although the database server handles conversion between data types
automatically, several things still can go wrong with a SELECT statement. In
SQL programming, as in any kind of programming, you must anticipate
errors and provide for them at every point.

End of Data

One common event is that no rows satisfy a query. This event is signalled by
an SQLSTATE code of 02000 and by a code of 100 in SQLCODE after a SELECT
statement. This code indicates an error or a normal event, depending entirely
on your application. If you are sure a row or rows should satisfy the query
(for example, if you are reading a row using a key value that you just read
from a row of another table), then the end-of-data code represents a serious
failure in the logic of the program. On the other hand, if you select a row
based on a key that is supplied by a user or by some other source that is less
reliable than a program, a lack of data can be a normal event.
Programming with SQL 5-17

Dealing with Errors
End of Data with Databases That Are Not ANSI Compliant

If your database is not ANSI compliant, the end-of-data return code, 100, is
set in SQLCODE following SELECT statements only. In addition, the SQLSTATE
value is set to 02000. (Other statements, such as INSERT, UPDATE, and
DELETE, set the third element of SQLERRD to show how many rows they
affected; this topic is covered in Chapter 6, “Modifying Data Through SQL
Programs.”)

Serious Errors

Errors that set SQLCODE to a negative value or SQLSTATE to a value that
begins with anything other than 00, 01, or 02 are usually serious. Programs
that you have developed and that are in production should rarely report
these errors. Nevertheless, it is difficult to anticipate every problematic
situation, so your program must be able to deal with these errors.

For example, a query can return error -206, which means that a table specified
in the query is not in the database. This condition occurs if someone dropped
the table after the program was written, or if the program opened the wrong
database through some error of logic or mistake in input.

Interpreting End of Data with Aggregate Functions

A SELECT statement that uses an aggregate function such as SUM, MIN, or
AVG always succeeds in returning at least one row of data, even when no
rows satisfy the WHERE clause. An aggregate value based on an empty set of
rows is null, but it exists nonetheless.
5-18 Informix Guide to SQL: Tutorial

Dealing with Errors
However, an aggregate value is also null if it is based on one or more rows
that all contain null values. If you must be able to detect the difference
between an aggregate value that is based on no rows and one that is based on
some rows that are all null, you must include a COUNT function in the
statement and an indicator variable on the aggregate value. You can then
work out the following cases.

Using Default Values

You can handle these inevitable errors in many ways. In some applications,
more lines of code are used to handle errors than to execute functionality. In
the examples in this section, however, one of the simplest solutions, the
default value, should work, as the following example shows:

avg_price = 0; /* set default for errors */
EXEC SQL select avg (total_price)

into :avg_price:null_flag
from items;

if (null_flag < 0) /* probably no rows */
avg_price = 0; /* set default for 0 rows */

The previous example deals with the following considerations:

■ If the query selects some non-null rows, the correct value is returned
and used. This result is the expected and most frequent one.

■ If the query selects no rows, or in the much less likely event that it
selects only rows that have null values in the total_price column (a
column that should never be null), the indicator variable is set, and
the default value is assigned.

■ If any serious error occurs, the host variable is left unchanged; it
contains the default value initially set. At this point in the program,
the programmer sees no need to trap such errors and report them.

Count Value Indicator Case

0 -1 Zero rows selected

>0 -1 Some rows selected; all were null

>0 0 Some non-null rows selected
Programming with SQL 5-19

Retrieving Multiple Rows
Retrieving Multiple Rows
When any chance exists that a query could return more than one row, the
program must execute the query differently. Multirow queries are handled in
two stages. First, the program starts the query. (No data is returned
immediately.) Then the program requests the rows of data one at a time.

These operations are performed using a special data object called a cursor. A
cursor is a data structure that represents the current state of a query. The
following list shows the general sequence of program operations:

1. The program declares the cursor and its associated SELECT statement,
which merely allocates storage to hold the cursor.

2. The program opens the cursor, which starts the execution of the
associated SELECT statement and detects any errors in it.

3. The program fetches a row of data into host variables and processes it.

4. The program closes the cursor after the last row is fetched.

5. When the cursor is no longer needed, the program frees the cursor to
deallocate the resources it uses.

These operations are performed with SQL statements named DECLARE,
OPEN, FETCH, CLOSE, and FREE.

Declaring a Cursor
You use the DECLARE statement to declare a cursor. This statement gives the
cursor a name, specifies its use, and associates it with a statement. The
following example is written in INFORMIX-ESQL/C:

EXEC SQL DECLARE the_item CURSOR FOR
SELECT order_num, item_num, stock_num
INTO o_num, i_num, s_num
FROM items
FOR READ ONLY;

The declaration gives the cursor a name (the_item in this case) and associates
it with a SELECT statement. (Chapter 6, “Modifying Data Through SQL
Programs,” discusses how a cursor can also be associated with an INSERT
statement.)
5-20 Informix Guide to SQL: Tutorial

Opening a Cursor
The SELECT statement in this example contains an INTO clause. The INTO
clause specifies which variables receive data. You can also use the FETCH
statement to specify which variables receive data, as discussed in “Locating
the INTO Clause” on page 5-23.

The DECLARE statement is not an active statement; it merely establishes the
features of the cursor and allocates storage for it. You can use the cursor
declared in the preceding example to read through the items table once.
Cursors can be declared to read backward and forward (see “Cursor Input
Modes” on page 5-23). This cursor, because it lacks a FOR UPDATE clause and
because it is designated FOR READ ONLY, is used only to read data, not to
modify it. (The use of cursors to modify data is covered in Chapter 6,
“Modifying Data Through SQL Programs.”)

Opening a Cursor
The program opens the cursor when it is ready to use it. The OPEN statement
activates the cursor. It passes the associated SELECT statement to the database
server, which begins the search for matching rows. The database server
processes the query to the point of locating or constructing the first row of
output. It does not actually return that row of data, but it does set a return
code in SQLSTATE and in SQLCODE for SQL APIs. The following example
shows the OPEN statement in ESQL/C:

EXEC SQL OPEN the_item;

Because the database server is seeing the query for the first time, it might
detect a number of errors. After the program opens the cursor, it should test
SQLSTATE or SQLCODE. If the SQLSTATE value is greater than 02000, or the
SQLCODE contains a negative number, the cursor is not usable. An error
might be present in the SELECT statement, or some other problem might
prevent the database server from executing the statement.

If SQLSTATE is equal to 00000, or SQLCODE contains a zero, the SELECT
statement is syntactically valid, and the cursor is ready to use. At this point,
however, the program does not know if the cursor can produce any rows.
Programming with SQL 5-21

Fetching Rows
Fetching Rows
The program uses the FETCH statement to retrieve each row of output. This
statement names a cursor and can also name the host variables that receive
the data. The following example shows the completed INFORMIX-ESQL/C
code:

EXEC SQL DECLARE the_item CURSOR FOR
SELECT order_num, item_num, stock_num

INTO :o_num, :i_num, :s_num
FROM items;

EXEC SQL OPEN the_item;
while(SQLCODE == 0)
{

EXEC SQL FETCH the_item;
if(SQLCODE == 0)

printf("%d, %d, %d", o_num, i_num, s_num);
}

Detecting End of Data

In the previous example, the WHILE condition prevents execution of the loop
in case the OPEN statement returns an error. The same condition terminates
the loop when SQLCODE is set to 100 to signal the end of data. However, the
loop contains a test of SQLCODE. This test is necessary because, if the SELECT
statement is valid yet finds no matching rows, the OPEN statement returns a
zero, but the first fetch returns 100 (end of data) and no data. The following
example shows another way to write the same loop:

EXEC SQL DECLARE the_item CURSOR FOR
SELECT order_num, item_num, stock_num
INTO :o_num, :i_num, :s_num
FROM items;

EXEC SQL OPEN the_item;
if(SQLCODE == 0)

EXEC SQL FETCH the_item; /* fetch 1st row
while(SQLCODE == 0)
{

printf("%d, %d, %d", o_num, i_num, s_num);
EXEC SQL FETCH the_item;

}

In this version, the case of no returned rows is handled early, so no second
test of SQLCODE exists within the loop. These versions have no measurable
difference in performance because the time cost of a test of SQLCODE is a tiny
fraction of the cost of a fetch.
5-22 Informix Guide to SQL: Tutorial

Cursor Input Modes
Locating the INTO Clause

The INTO clause names the host variables that are to receive the data returned
by the database server. The INTO clause must appear in either the SELECT or
the FETCH statement. However it cannot appear in both statements. The
following example specifies host variables in the FETCH statement:

EXEC SQL DECLARE the_item CURSOR FOR
SELECT order_num, item_num, stock_num

FROM items;
EXEC SQL OPEN the_item;
while(SQLCODE == 0)
{

EXEC SQL FETCH the_item INTO :o_num, :i_num, :s_num;
if(SQLCODE == 0)

printf("%d, %d, %d", o_num, i_num, s_num);
}

This form lets you fetch different rows into different locations. For example,
you could use this form to fetch successive rows into successive elements of
an array.

Cursor Input Modes
For purposes of input, a cursor operates in one of two modes, sequential or
scrolling. A sequential cursor can fetch only the next row in sequence, so a
sequential cursor can read through a table only once each time the cursor is
opened. A scroll cursor can fetch the next row or any of the output rows, so
a scroll cursor can read the same rows multiple times. The following example
shows a sequential cursor declared in INFORMIX-ESQL/C:

EXEC SQL declare pcurs cursor for
select customer_num, lname, city

from customer;

After the cursor is opened, it can be used only with a sequential fetch that
retrieves the next row of data, as the following example shows.

EXEC SQL fetch p_curs into:cnum, :clname, :ccity;

Each sequential fetch returns a new row.
Programming with SQL 5-23

Active Set of a Cursor
A scroll cursor is declared with the keywords SCROLL CURSOR, as the
following example from INFORMIX-ESQL/C shows:

EXEC SQL DECLARE s_curs SCROLL CURSOR FOR
SELECT order_num, order_date FROM orders

WHERE customer_num > 104

Use the scroll cursor with a variety of fetch options. For example, the
ABSOLUTE option specifies the absolute row position of the row to fetch.

EXEC SQL FETCH ABSOLUTE :numrow s_curs
INTO :nordr, :nodat

This statement fetches the row whose position is given in the host variable
numrow. You can also fetch the current row again, or you can fetch the first
row and then scan through all the rows again. However, these features have
a price, as the next section describes. For additional options that apply to
scroll cursors, see the FETCH statement in the Informix Guide to SQL: Syntax.

Active Set of a Cursor
Once a cursor is opened, it stands for some selection of rows. The set of all
rows that the query produces is called the active set of the cursor. It is easy to
think of the active set as a well-defined collection of rows and to think of the
cursor as pointing to one row of the collection. This situation is true as long
as no other programs are modifying the same data concurrently.

Creating the Active Set

When a cursor is opened, the database server does whatever is necessary to
locate the first row of selected data. Depending on how the query is phrased,
this action can be very easy, or it can require a great deal of work and time.
Consider the following declaration of a cursor:

EXEC SQL DECLARE easy CURSOR FOR
SELECT fname, lname FROM customer

WHERE state = 'NJ'
5-24 Informix Guide to SQL: Tutorial

Active Set of a Cursor
Because this cursor queries only a single table in a simple way, the database
server quickly determines whether any rows satisfy the query and identifies
the first one. The first row is the only row the cursor finds at this time. The
rest of the rows in the active set remain unknown. As a contrast, consider the
following declaration of a cursor:

EXEC SQL DECLARE hard SCROLL CURSOR FOR
SELECT C.customer_num, O.order_num, sum (items.total_price)

FROM customer C, orders O, items I
WHERE C.customer_num = O.customer_num

AND O.order_num = I.order_num
AND O.paid_date is null

GROUP BY C.customer_num, O.order_num

The active set of this cursor is generated by joining three tables and grouping
the output rows. The optimizer might be able to use indexes to produce the
rows in the correct order, but generally the use of ORDER BY or GROUP BY
clauses requires the database server to generate all the rows, copy them to a
temporary table, and sort the table, before it can determine which row to
present first.

In cases where the active set is entirely generated and saved in a temporary
table, the database server can take quite some time to open the cursor. After-
wards, the database server could tell the program exactly how many rows the
active set contains. However, this information is not made available. One
reason is that you can never be sure which method the optimizer uses. If the
optimizer can avoid sorts and temporary tables, it does so; but very small
changes in the query, in the sizes of the tables, or in the available indexes can
change the optimizer’s methods.

Active Set for a Sequential Cursor

The database server attempts to use as few resources as possible to maintain
the active set of a cursor. If it can do so, the database server never retains more
than the single row that is fetched next. It can do this for most sequential
cursors. On each fetch, it returns the contents of the current row and locates
the next one.

Active Set for a Scroll Cursor

All the rows in the active set for a scroll cursor must be retained until the
cursor closes because the database server cannot be sure which row the
program will ask for next.
Programming with SQL 5-25

Active Set of a Cursor
Most frequently, the database server implements the active set of a scroll
cursor as a temporary table. The database server might not fill this table
immediately, however (unless it created a temporary table to process the
query). Usually it creates the temporary table when the cursor is opened.
Then, the first time a row is fetched, the database server copies it into the
temporary table and returns it to the program. When a row is fetched for a
second time, it can be taken from the temporary table. This scheme uses the
fewest resources in the event that the program abandons the query before it
fetches all the rows. Rows that are never fetched are not created or saved.

Active Set and Concurrency

When only one program is using a database, the members of the active set
cannot change. This situation describes most personal computers, and it is
the easiest situation to think about. But some programs must be designed for
use in a multiprogramming system, where two, three, or dozens of different
programs can work on the same tables simultaneously.

When other programs can update the tables while your cursor is open, the
idea of the active set becomes less useful. Your program can see only one row
of data at a time, but all other rows in the table can be changing.

In the case of a simple query, when the database server holds only one row of
the active set, any other row can change. The instant after your program
fetches a row, another program can delete the same row or update it so that
if it is examined again, it is no longer part of the active set.

When the active set, or part of it, is saved in a temporary table, stale data can
present a problem. That is, the rows in the actual tables, from which the
active-set rows are derived, can change. If they do, some of the active-set
rows no longer reflect the current table contents.

These ideas seem unsettling at first, but as long as your program only reads
the data, stale data does not exist, or rather, all data is equally stale. The active
set is a snapshot of the data as it is at one moment in time. A row is different
the next day; it does not matter if it is also different in the next millisecond.
To put it another way, no practical difference exists between changes that
occur while the program is running and changes that are saved and applied
the instant that the program terminates.
5-26 Informix Guide to SQL: Tutorial

Using a Cursor: A Parts Explosion
The only time that stale data can cause a problem is when the program
intends to use the input data to modify the same database; for example, when
a banking application must read an account balance, change it, and write it
back. Chapter 6, “Modifying Data Through SQL Programs,” discusses
programs that modify data.

Using a Cursor: A Parts Explosion
When you use a cursor, supplemented by program logic, you can solve
problems that plain SQL cannot solve. One of these problems is the parts-
explosion problem, sometimes called bill-of-materials processing. At the
heart of this problem is a recursive relationship among objects; one object
contains other objects, which contain yet others.

The problem is usually stated in terms of a manufacturing inventory. A
company makes a variety of parts, for example. Some parts are discrete, but
some are assemblages of other parts.

These relationships are documented in a single table, which might be called
contains. The column contains.parent holds the part numbers of parts that
are assemblages. The column contains.child has the part number of a part
that is a component of the parent. If part number 123400 is an assembly of
nine parts, nine rows exist with 123400 in the first column and other part
numbers in the second. Figure 5-5 shows one of the rows that describe part
number 123400.

Figure 5-5
Parts-Explosion

Problem

PARENT

 FK NN

CONTAINS

432100
765899

 FK NN

CHILD

123400
432100
Programming with SQL 5-27

Using a Cursor: A Parts Explosion
Here is the parts-explosion problem: given a part number, produce a list of
all parts that are components of that part. The following example is a sketch
of one solution, as implemented in INFORMIX-ESQL/C:

int part_list[200];

boom(top_part)
int top_part;
{

long this_part, child_part;
int next_to_do = 0, next_free = 1;
part_list[next_to_do] = top_part;

EXEC SQL DECLARE part_scan CURSOR FOR
SELECT child INTO child_part FROM contains

WHERE parent = this_part;
while(next_to_do < next_free)
{

this_part = part_list[next_to_do];
EXEC SQL OPEN part_scan;
while(SQLCODE == 0)
{

EXEC SQL FETCH part_scan;
if(SQLCODE == 0)
{

part_list[next_free] = child_part;
next_free += 1;

}
}
EXEC SQL CLOSE part_scan;
next_to_do += 1;

}
return (next_free - 1);

}

Technically speaking, each row of the contains table is the head node of a
directed acyclic graph, or tree. The function performs a breadth-first search of
the tree whose root is the part number passed as its parameter. The function
uses a cursor named part_scan to return all the rows with a particular value
in the parent column. The innermost while loop opens the part_scan cursor,
fetches each row in the selection set, and closes the cursor when the part
number of each component has been retrieved.

This function addresses the heart of the parts-explosion problem, but the
function is not a complete solution. For example, it does not allow for compo-
nents that appear at more than one level in the tree. Furthermore, a practical
contains table would also have a column count, giving the count of child
parts used in each parent. A program that returns a total count of each
component part is much more complicated.
5-28 Informix Guide to SQL: Tutorial

Dynamic SQL
The iterative approach described earlier is not the only way to approach the
parts-explosion problem. If the number of generations has a fixed limit, you
can solve the problem with a single SELECT statement using nested, outer
self-joins.

If up to four generations of parts can be contained within one top-level part,
the following SELECT statement returns all of them:

SELECT a.parent, a.child, b.child, c.child, d.child
FROM contains a

OUTER (contains b,
OUTER (contains c, outer contains d))

WHERE a.parent = top_part_number
AND a.child = b.parent
AND b.child = c.parent
AND c.child = d.parent

This SELECT statement returns one row for each line of descent rooted in the
part given as top_part_number. Null values are returned for levels that do
not exist. (Use indicator variables to detect them.) To extend this solution to
more levels, select additional nested outer joins of the contains table.You can
also revise this solution to return counts of the number of parts at each level.

Dynamic SQL
Although static SQL is useful, it requires that you know the exact content of
every SQL statement at the time you write the program. For example, you
must state exactly which columns are tested in any WHERE clause and exactly
which columns are named in any select list.

No problem exists when you write a program to perform a well-defined task.
But the database tasks of some programs cannot be perfectly defined in
advance. In particular, a program that must respond to an interactive user
might need to compose SQL statements in response to what the user enters.
Programming with SQL 5-29

Preparing a Statement
Dynamic SQL allows a program to form an SQL statement during execution,
so that user input determines the contents of the statement. This action is
performed in the following steps:

1. The program assembles the text of an SQL statement as a character
string, which is stored in a program variable.

2. It executes a PREPARE statement, which asks the database server to
examine the statement text and prepare it for execution.

3. It uses the EXECUTE statement to execute the prepared statement.

In this way, a program can construct and then use any SQL statement, based
on user input of any kind. For example, it can read a file of SQL statements
and prepare and execute each one.

DB-Access, a utility that you can use to explore SQL interactively, is an
INFORMIX-ESQL/C program that constructs, prepares, and executes SQL
statements dynamically. For example, DB-Access lets you use simple, inter-
active menus to specify the columns of a table. When you are finished,
DB-Access builds the necessary CREATE TABLE or ALTER TABLE statement
dynamically and prepares and executes it.

Preparing a Statement
In form, a dynamic SQL statement is like any other SQL statement that is
written into a program, except that it cannot contain the names of any host
variables.

A dynamic SQL statement has two restrictions. First, if it is a SELECT
statement, it cannot include the INTO clause. The INTO clause names host
variables into which column data is placed, and host variables are not
allowed in a dynamic statement. Second, wherever the name of a host
variable normally appears in an expression, a question mark (?) is written as
a placeholder.

You can prepare a statement in this form for execution with the PREPARE
statement. The following example is written in INFORMIX-ESQL/C:

EXEC SQL prepare query_2 from
'select * from orders

where customer_num = ? and
order_date > ?';
5-30 Informix Guide to SQL: Tutorial

Executing Prepared SQL
The two question marks in this example indicate that when the statement is
executed, the values of host variables are used at those two points.

You can prepare almost any SQL statement dynamically. The only statements
that you cannot prepare are the ones directly concerned with dynamic SQL
and cursor management, such as the PREPARE and OPEN statements. After
you prepare an UPDATE or DELETE statement, it is a good idea to test the fifth
field of SQLWARN to see if you used a WHERE clause (see “SQLWARN Array”
on page 5-11).

The result of preparing a statement is a data structure that represents the
statement. This data structure is not the same as the string of characters that
produced it. In the PREPARE statement, you give a name to the data structure;
it is query_2 in the preceding example. This name is used to execute the
prepared SQL statement.

The PREPARE statement does not limit the character string to one statement.
It can contain multiple SQL statements, separated by semicolons. The
following example shows a fairly complex transaction in INFORMIX-ESQL/C:

strcpy(big_query, "UPDATE account SET balance = balance + ?
WHERE customer_id = ?; \ UPDATE teller SET balance =
balance + ? WHERE teller_id = ?;");
EXEC SQL PREPARE big1 FROM :big_query;

When this list of statements is executed, host variables must provide values
for six place-holding question marks. Although it is more complicated to set
up a multistatement list, performance is often better because fewer
exchanges take place between the program and the database server.

Executing Prepared SQL
Once a statement is prepared, it can be executed multiple times. Statements
other than SELECT statements, and SELECT statements that return only a
single row, are executed with the EXECUTE statement.

The following INFORMIX-ESQL/C code prepares and executes a
multistatement update of a bank account:

EXEC SQL BEGIN DECLARE SECTION;
char bigquery[270] = "begin work;";
EXEC SQL END DECLARE SECTION;
stcat ("update account set balance = balance + ? where ", bigquery);
stcat ("acct_number = ?;', bigquery);
stcat ("update teller set balance = balance + ? where ", bigquery);
Programming with SQL 5-31

Dynamic Host Variables
stcat ("teller_number = ?;', bigquery);
stcat ("update branch set balance = balance + ? where ", bigquery);
stcat ("branch_number = ?;', bigquery);
stcat ("insert into history values(timestamp, values);", bigquery);

EXEC SQL prepare bigq from :bigquery;

EXEC SQL execute bigq using :delta, :acct_number, :delta,
:teller_number, :delta, :branch_number;

EXEC SQL commit work;

The USING clause of the EXECUTE statement supplies a list of host variables
whose values are to take the place of the question marks in the prepared
statement. If a SELECT (or an EXECUTE PROCEDURE) returns only one row,
you can use the INTO clause of EXECUTE to specify the host variables that
receive the values.

Dynamic Host Variables
SQL APIs, which support dynamically allocated data objects, take dynamic
statements one step further. They let you dynamically allocate the host
variables that receive column data.

Dynamic allocation of variables makes it possible to take an arbitrary SELECT
statement from program input, determine how many values it produces and
their data types, and allocate the host variables of the appropriate types to
hold them.

The key to this ability is the DESCRIBE statement. It takes the name of a
prepared SQL statement and returns information about the statement and its
contents. It sets SQLCODE to specify the type of statement; that is, the verb
with which it begins. If the prepared statement is a SELECT statement, the
DESCRIBE statement also returns information about the selected output data.
If the prepared statement is an INSERT statement, the DESCRIBE statement
returns information about the input parameters. The data structure to which
a DESCRIBE statement returns information is a predefined data structure that
is allocated for this purpose and is known as a system-descriptor area. If you
are using INFORMIX-ESQL/C, you can use a system-descriptor area or, as an
alternative, an sqlda structure.
5-32 Informix Guide to SQL: Tutorial

Freeing Prepared Statements
The data structure that a DESCRIBE statement returns or references for a
SELECT statement includes an array of structures. Each structure describes
the data that is returned for one item in the select list. The program can
examine the array and discover that a row of data includes a decimal value,
a character value of a certain length, and an integer.

With this information, the program can allocate memory to hold the retrieved
values and put the necessary pointers in the data structure for the database
server to use.

Freeing Prepared Statements
A prepared SQL statement occupies space in memory. With some database
servers, it can consume space owned by the database server as well as space
that belongs to the program. This space is released when the program
terminates, but in general, you should free this space when you finish with it.

You can use the FREE statement to release this space. The FREE statement
takes either the name of a statement or the name of a cursor that was declared
for a statement name, and releases the space allocated to the prepared
statement. If more than one cursor is defined on the statement, freeing the
statement does not free the cursor.

Quick Execution
For simple statements that do not require a cursor or host variables, you can
combine the actions of the PREPARE, EXECUTE, and FREE statements into a
single operation. The following example shows how the EXECUTE
IMMEDIATE statement takes a character string, prepares it, executes it, and
frees the storage in one operation:

EXEC SQL execute immediate 'drop index my_temp_index';

This capability makes it easy to write simple SQL operations. However,
because no USING clause is allowed, the EXECUTE IMMEDIATE statement
cannot be used for SELECT statements.
Programming with SQL 5-33

Embedding Data-Definition Statements
Embedding Data-Definition Statements
Data-definition statements, the SQL statements that create databases and
modify the definitions of tables, are not usually put into programs. The
reason is that they are rarely performed. A database is created once, but it is
queried and updated many times.

The creation of a database and its tables is generally done interactively, using
DB-Access or Relational Object Manager. These tools can also be run from a
file of statements, so that the creation of a database can be done with one
operating-system command. The data definition statements are documented
in the Informix Guide to SQL: Syntax and the Informix Guide to Database Design
and Implementation.

Embedding Grant and Revoke Privileges
One task related to data definition is performed repeatedly: granting and
revoking privileges. Because privileges must be granted and revoked
frequently, and possibly by users who are not skilled in SQL, it can be useful
to package the GRANT and REVOKE statements in programs to give them a
simpler, more convenient user interface.

The GRANT and REVOKE statements are especially good candidates for
dynamic SQL. Each statement takes the following parameters:

■ A list of one or more privileges

■ A table name

■ The name of a user

You probably need to supply at least some of these values based on program
input (from the user, command-line parameters, or a file) but none can be
supplied in the form of a host variable. The syntax of these statements does
not allow host variables at any point.

The only alternative is to assemble the parts of a statement into a character
string and to prepare and execute the assembled statement. Program input
can be incorporated into the prepared statement as characters.
5-34 Informix Guide to SQL: Tutorial

Embedding Grant and Revoke Privileges
The following INFORMIX-ESQL/C function assembles a GRANT statement
from parameters, and then prepares and executes it:

char priv_to_grant[100];
char table_name[20];
char user_id[20];

table_grant(priv_to_grant, table_name, user_id)
char *priv_to_grant;
char *table_name;
char *user_id;
{

EXEC SQL BEGIN DECLARE SECTION;
char grant_stmt[200];
EXEC SQL END DECLARE SECTION;

sprintf(grant_stmt, " GRANT %s ON %s TO %s",
priv_to_grant, table_name, user_id);

PREPARE the_grant FROM :grant_stmt;
if(SQLCODE == 0)

EXEC SQL EXECUTE the_grant;
else

printf("Sorry, got error # %d attempting %s",
SQLCODE, grant_stmt);

EXEC SQL FREE the_grant;
}

The opening statement of the function, shown in the following example,
specifies its name and its three parameters. The three parameters specify the
privileges to grant, the name of the table on which to grant privileges, and the
ID of the user to receive them:

table_grant(priv_to_grant, table_name, user_id)
char *priv_to_grant;
char *table_name;
char *user_id;

The function uses the statements in the following example to define a local
variable, grant_stmt, which is used to assemble and hold the GRANT
statement:

EXEC SQL BEGIN DECLARE SECTION;
char grant_stmt[200];

EXEC SQL END DECLARE SECTION;
Programming with SQL 5-35

Embedding Grant and Revoke Privileges
As the following example illustrates, the GRANT statement is created by
concatenating the constant parts of the statement and the function
parameters:

sprintf(grant_stmt, " GRANT %s ON %s TO %s",priv_to_grant, table_name, user_id);

This statement concatenates the following six character strings:

■ 'GRANT'

■ The parameter that specifies the privileges to be granted

■ 'ON'

■ The parameter that specifies the table name

■ 'TO'

■ The parameter that specifies the user

The result is a complete GRANT statement composed partly of program
input. The PREPARE statement passes the assembled statement text to the
database server for parsing.

If the database server returns an error code in SQLCODE following the
PREPARE statement, the function displays an error message. If the database
server approves the form of the statement, it sets a zero return code. This
action does not guarantee that the statement is executed properly; it means
only that the statement has correct syntax. It might refer to a nonexistent table
or contain many other kinds of errors that can be detected only during
execution. The following portion of the example checks that the_grant was
prepared successfully before executing it:

if(SQLCODE == 0)
EXEC SQL EXECUTE the_grant;

else
printf("Sorry, got error # %d attempting %s", SQLCODE, grant_stmt);

If the preparation is successful, SQLCODE = = 0, the next step executes the
prepared statement.
5-36 Informix Guide to SQL: Tutorial

Summary
Summary
SQL statements can be written into programs as if they were normal
statements of the programming language. Program variables can be used in
WHERE clauses, and data from the database can be fetched into them. A
preprocessor translates the SQL code into procedure calls and data structures.

Statements that do not return data, or queries that return only one row of
data, are written like ordinary imperative statements of the language.
Queries that can return more than one row are associated with a cursor that
represents the current row of data. Through the cursor, the program can fetch
each row of data as it is needed.

Static SQL statements are written into the text of the program. However, the
program can form new SQL statements dynamically, as it runs, and execute
them also. In the most advanced cases, the program can obtain information
about the number and types of columns that a query returns and
dynamically allocate the memory space to hold them.
Programming with SQL 5-37

6
Chapter
Modifying Data Through SQL
Programs
Using DELETE . 6-3
Direct Deletions 6-4

Errors During Direct Deletions 6-4
Using Transaction Logging 6-5
Coordinated Deletions 6-6

Deleting with a Cursor 6-7

Using INSERT . 6-9
Using an Insert Cursor 6-9

Declaring an Insert Cursor 6-9
Inserting with a Cursor. 6-10
Status Codes After PUT and FLUSH 6-11

Rows of Constants. 6-12
An Insert Example. 6-12

Using UPDATE . 6-15
Using an Update Cursor 6-15

The Purpose of the Keyword UPDATE 6-16
Updating Specific Columns 6-16
UPDATE Keyword Not Always Needed. 6-16

Cleaning Up a Table 6-17

Summary . 6-18

6-2 Infor
mix Guide to SQL: Tutorial

The preceding chapter introduced the idea of inserting or embedding
SQL statements, especially the SELECT statement, into programs written in
other languages. Embedded SQL enables a program to retrieve rows of data
from a database.

This chapter discusses the issues that arise when a program needs to delete,
insert, or update rows to modify the database. As in Chapter 5,
“Programming with SQL,” this chapter prepares you for reading the manual
for your Informix embedded language.

The general use of the INSERT, UPDATE, and DELETE statements is discussed
in Chapter 4, “Modifying Data.” This chapter examines their use from within
a program. You can easily embed the statements in a program, but it can be
difficult to handle errors and to deal with concurrent modifications from
multiple programs.

Using DELETE
To delete rows from a table, a program executes a DELETE statement. The
DELETE statement can specify rows in the usual way with a WHERE clause,
or it can refer to a single row, the last one fetched through a specified cursor.

Whenever you delete rows, you must consider whether rows in other tables
depend on the deleted rows. This problem of coordinated deletions is
covered in Chapter 4, “Modifying Data.” The problem is the same when
deletions are made from within a program.
Modifying Data Through SQL Programs 6-3

Direct Deletions
Direct Deletions
You can embed a DELETE statement in a program. The following example
uses INFORMIX-ESQL/C:

EXEC SQL delete from items
where order_num = :onum;

You can also prepare and execute a statement of the same form dynamically.
In either case, the statement works directly on the database to affect one or
more rows.

The WHERE clause in the example uses the value of a host variable named
onum. Following the operation, results are posted in SQLSTATE and in the
sqlca structure, as usual. The third element of the SQLERRD array contains
the count of rows deleted even if an error occurs. The value in SQLCODE
shows the overall success of the operation. If the value is not negative, no
errors occurred and the third element of SQLERRD is the count of all rows that
satisfied the WHERE clause and were deleted.

Errors During Direct Deletions

When an error occurs, the statement ends prematurely. The values in
SQLSTATE and in SQLCODE and the second element of SQLERRD explain its
cause, and the count of rows reveals how many rows were deleted. For many
errors, that count is zero because the errors prevented the database server
from beginning the operation. For example, if the named table does not exist,
or if a column tested in the WHERE clause is renamed, no deletions are
attempted.

However, certain errors can be discovered after the operation begins and
some rows are processed. The most common of these errors is a lock conflict.
The database server must obtain an exclusive lock on a row before it can
delete that row. Other programs might be using the rows from the table,
preventing the database server from locking a row. Because the issue of
locking affects all types of modifications, it is discussed in Chapter 7,
“Programming for a Multiuser Environment.”

Other, rarer types of errors can strike after deletions begin. For example,
hardware errors that occur while the database is being updated.
6-4 Informix Guide to SQL: Tutorial

Direct Deletions
Using Transaction Logging

The best way to prepare for any kind of error during a modification is to use
transaction logging. In the event of an error, you can tell the database server
to put the database back the way it was. The following example is based on
the example in the section “Direct Deletions” on page 6-4, which is extended
to use transactions:

EXEC SQL begin work;/* start the transaction*/
EXEC SQL delete from items

where order_num = :onum;
del_result = sqlca.sqlcode;/* save two error */
del_isamno = sqlca.sqlerrd[1];/* ...code numbers */
del_rowcnt = sqlca.sqlerrd[2];/* ...and count of rows */
if (del_result < 0)/* some problem, */

EXEC SQL rollback work;/* ...put everything back */
else /* everything worked OK, */

EXEC SQL commit work;/* ...finish transaction */

A key point in this example is that the program saves the important return
values in the sqlca structure before it ends the transaction. Both the
ROLLBACK WORK and COMMIT WORK statements, like other SQL statements,
set return codes in the sqlca structure. Executing a ROLLBACK WORK
statement after an error wipes out the error code; unless it was saved, it
cannot be reported to the user.

The advantage of using transactions is that the database is left in a known,
predictable state no matter what goes wrong. No question remains about
how much of the modification is completed; either all of it or none of it is
completed.

In a database with logging, if a user does not start an explicit transaction, the
database server initiates an internal transaction prior to execution of the
statement and terminates the transaction after execution completes or fails. If
the statement execution succeeds, the internal transaction is committed. If the
statement fails, the internal transaction is rolled back.
Modifying Data Through SQL Programs 6-5

Direct Deletions
Coordinated Deletions

The usefulness of transaction logging is particularly clear when you must
modify more than one table. For example, consider the problem of deleting
an order from the demonstration database. In the simplest form of the
problem, you must delete rows from two tables, orders and items, as the
following example of INFORMIX-ESQL/C shows:

EXEC SQL BEGIN WORK;
EXEC SQL DELETE FROM items

WHERE order_num = :o_num;
if (SQLCODE >= 0)
{

EXEC SQL DELETE FROM orders
WHERE order_num = :o_num;

if (SQLCODE >= 0)
EXEC SQL COMMIT WORK;

else
{

printf("Error %d on DELETE", SQLCODE);
EXEC SQL ROLLBACK WORK;

}
}

The logic of this program is much the same whether or not transactions are
used. If they are not used, the person who sees the error message has a much
more difficult set of decisions to make. Depending on when the error
occurred, one of the following situations applies:

■ No deletions were performed; all rows with this order number
remain in the database.

■ Some, but not all, item rows were deleted; an order record with only
some items remains.

■ All item rows were deleted, but the order row remains.

■ All rows were deleted.

In the second and third cases, the database is corrupted to some extent; it
contains partial information that can cause some queries to produce wrong
answers. You must take careful action to restore consistency to the
information. When transactions are used, all these uncertainties are
prevented.
6-6 Informix Guide to SQL: Tutorial

Deleting with a Cursor
Deleting with a Cursor
You can also write a DELETE statement with a cursor to delete the row that
was last fetched. Deleting rows in this manner lets you program deletions
based on conditions that cannot be tested in a WHERE clause, as the following
example shows. The following example applies only to databases that are not
ANSI compliant because of the way that the beginning and end of the trans-
action are set up.

Warning: The design of the ESQL/C function in this example is unsafe. It depends
on the current isolation level for correct operation. Isolation levels are discussed later
in the chapter. For information on isolation levels see Chapter 7, “Programming for
a Multiuser Environment.” Even when the function works as intended, its effects
depend on the physical order of rows in the table, which is not generally a good idea.

int delDupOrder()
{

int ord_num;
int dup_cnt, ret_code;

EXEC SQL declare scan_ord cursor for
select order_num, order_date

into :ord_num, :ord_date
from orders for update;

EXEC SQL open scan_ord;
if (sqlca.sqlcode != 0)

return (sqlca.sqlcode);
EXEC SQL begin work;
for(;;)
{

EXEC SQL fetch next scan_ord;
if (sqlca.sqlcode != 0) break;
dup_cnt = 0; /* default in case of error */
EXEC SQL select count(*) into dup_cnt from orders

where order_num = :ord_num;
if (dup_cnt > 1)
{

EXEC SQL delete from orders
where current of scan_ord;

if (sqlca.sqlcode != 0)
break;

}
}
ret_code = sqlca.sqlcode;
if (ret_code == 100) /* merely end of data */

EXEC SQL commit work;
else /* error on fetch or on delete */

EXEC SQL rollback work;
return (ret_code);

}

Modifying Data Through SQL Programs 6-7

Deleting with a Cursor
The purpose of the function is to delete rows that contain duplicate order
numbers. In fact, in the demonstration database, the orders.order_num
column has a unique index, so duplicate rows cannot occur in it. However, a
similar function can be written for another database; this one uses familiar
column names.

The function declares scan_ord, a cursor to scan all rows in the orders table.
It is declared with the FOR UPDATE clause, which states that the cursor can
modify data. If the cursor opens properly, the function begins a transaction
and then loops over rows of the table. For each row, it uses an embedded
SELECT statement to determine how many rows of the table have the order
number of the current row. (This step fails without the correct isolation level,
as described in Chapter 7, “Programming for a Multiuser Environment.”)

In the demonstration database, with its unique index on this table, the count
returned to dup_cnt is always one. However, if it is greater, the function
deletes the current row of the table, reducing the count of duplicates by one.

Clean-up functions of this sort are sometimes needed, but they generally
need more sophisticated design. This function deletes all duplicate rows
except the last one that the database server returns. That order has nothing to
do with the contents of the rows or their meanings. You can improve the
function in the previous example by adding, perhaps, an ORDER BY clause to
the cursor declaration. However, you cannot use ORDER BY and FOR UPDATE
together. A better approach is presented in “An Insert Example” on
page 6-12.
6-8 Informix Guide to SQL: Tutorial

Using INSERT
Using INSERT
You can embed the INSERT statement in programs. Its form and use in a
program are the same as described in Chapter 4, “Modifying Data,” with the
additional feature that you can use host variables in expressions, both in the
VALUES and WHERE clauses. Moreover, a program has the additional ability
to insert rows with a cursor.

Using an Insert Cursor
The DECLARE CURSOR statement has many variations. Most are used to
create cursors for different kinds of scans over data, but one variation creates
a special kind of cursor called an insert cursor. You use an insert cursor with
the PUT and FLUSH statements to insert rows into a table in bulk efficiently.

Declaring an Insert Cursor

To create an insert cursor, declare a cursor to be for an INSERT statement
instead of a SELECT statement. You cannot use such a cursor to fetch rows of
data; you can use it only to insert them. The following code example shows
the declaration of an insert cursor:

DEFINE the_company LIKE customer.company,
the_fname LIKE customer.fname,
the_lname LIKE customer.lname

DECLARE new_custs CURSOR FOR
INSERT INTO customer (company, fname, lname)

VALUES (the_company, the_fname, the_lname)

When you open an insert cursor, a buffer is created in memory to hold a block
of rows. The buffer receives rows of data as the program produces them; then
they are passed to the database server in a block when the buffer is full. This
reduces the amount of communication between the program and the
database server, and it lets the database server insert the rows with less diffi-
culty. As a result, the insertions go faster.

The buffer is always made large enough to hold at least two rows of inserted
values. It is large enough to hold more than two rows when the rows are
shorter than the minimum buffer size.
Modifying Data Through SQL Programs 6-9

Using an Insert Cursor
Inserting with a Cursor

The code in the previous example prepares an insert cursor for use. The
continuation, as the following example shows, demonstrates how the cursor
can be used. For simplicity, this example assumes that a function named
next_cust returns either information about a new customer or null data to
signal the end of input.

EXEC SQL BEGIN WORK;
EXEC SQL OPEN new_custs;
while(SQLCODE == 0)
{

next_cust();
if(the_company == NULL)

break;
EXEC SQL PUT new_custs;

}
if(SQLCODE == 0) /* if no problem with PUT */
{

EXEC SQL FLUSH new_custs;/* write any rows left */
if(SQLCODE == 0)/* if no problem with FLUSH */

EXEC SQL COMMIT WORK;/* commit changes */
}
else

EXEC SQL ROLLBACK WORK;/* else undo changes */

The code in this example calls next_cust repeatedly. When it returns non-null
data, the PUT statement sends the returned data to the row buffer. When the
buffer fills, the rows it contains are automatically sent to the database server.
The loop normally ends when next_cust has no more data to return. Then the
FLUSH statement writes any rows that remain in the buffer, after which the
transaction terminates.

Examine the INSERT statement on page 6-9 once more. The statement by
itself, not part of a cursor definition, inserts a single row into the customer
table. In fact, the whole apparatus of the insert cursor can be dropped from
the example code, and the INSERT statement can be written into the code
where the PUT statement now stands. The difference is that an insert cursor
causes a program to run somewhat faster.
6-10 Informix Guide to SQL: Tutorial

Using an Insert Cursor
Status Codes After PUT and FLUSH

When a program executes a PUT statement, the program should test whether
the row is placed in the buffer successfully. If the new row fits in the buffer,
the only action of PUT is to copy the row to the buffer. No errors can occur in
this case. However, if the row does not fit, the entire buffer load is passed to
the database server for insertion, and an error can occur.

The values returned into the SQL Communications Area (SQLCA) give the
program the information it needs to sort out each case. SQLCODE and
SQLSTATE are set after every PUT statement, to zero if no error occurs and to
a negative error code if an error occurs.

The third element of SQLERRD is set to the number of rows actually inserted
into the table. It is set to zero if the new row is merely moved to the buffer; to
the count of rows that are in the buffer if the buffer load is inserted without
error; or to the count of rows inserted before an error occurs, if one does
occur.

Read the code once again to see how SQLCODE is used (see the previous
example). First, if the OPEN statement yields an error, the loop is not executed
because the WHILE condition fails, the FLUSH operation is not performed,
and the transaction rolls back.Second, if the PUT statement returns an error,
the loop ends because of the WHILE condition, the FLUSH operation is not
performed, and the transaction rolls back. This condition can occur only if the
loop generates enough rows to fill the buffer at least once; otherwise, the PUT
statement cannot generate an error.

The program might end the loop with rows still in the buffer, possibly
without inserting any rows. At this point, the SQL status is zero, and the
FLUSH operation occurs. If the FLUSH operation produces an error code, the
transaction rolls back. Only when all inserts are successfully performed is the
transaction committed.
Modifying Data Through SQL Programs 6-11

Rows of Constants
Rows of Constants
The insert cursor mechanism supports one special case where high
performance is easy to obtain. In this case, all the values listed in the INSERT
statement are constants: no expressions and no host variables are listed, just
literal numbers and strings of characters. No matter how many times such an
INSERT operation occurs, the rows it produces are identical. When the rows
are identical, copying, buffering, and transmitting each identical row is
pointless.

Instead, for this kind of INSERT operation, the PUT statement does nothing
except to increment a counter. When a FLUSH operation is finally performed,
a single copy of the row, and the count of inserts, is passed to the database
server. The database server creates and inserts that many rows in one
operation.

You do not usually insert a quantity of identical rows. You can insert identical
rows when you first establish a database, to populate a large table with null
data.

An Insert Example
“Deleting with a Cursor” on page 6-7 contains an example of the DELETE
statement whose purpose is to look for and delete duplicate rows of a table.
A better way to perform this task is to select the desired rows instead of
deleting the undesired ones. The code in the following INFORMIX-ESQL/C
example shows one way to do this.

EXEC SQL BEGIN DECLARE SECTION;
long last_ord = 1;
struct {

long int o_num;
date o_date;
long c_num;
char o_shipinst[40];
char o_backlog;
char o_po[10];
date o_shipdate;
decimal o_shipwt;
decimal o_shipchg;
date o_paiddate;
} ord_row;

EXEC SQL END DECLARE SECTION;

EXEC SQL BEGIN WORK;
6-12 Informix Guide to SQL: Tutorial

An Insert Example
EXEC SQL INSERT INTO new_orders
SELECT * FROM orders main

WHERE 1 = (SELECT COUNT(*) FROM orders minor
WHERE main.order_num = minor.order_num);

EXEC SQL COMMIT WORK;

EXEC SQL DECLARE dup_row CURSOR FOR
SELECT * FROM orders main INTO :ord_row

WHERE 1 < (SELECT COUNT(*) FROM orders minor
WHERE main.order_num = minor.order_num)

ORDER BY order_date;
EXEC SQL DECLARE ins_row CURSOR FOR

INSERT INTO new_orders VALUES (:ord_row);

EXEC SQL BEGIN WORK;
EXEC SQL OPEN ins_row;
EXEC SQL OPEN dup_row;
while(SQLCODE == 0)
{

EXEC SQL FETCH dup_row;
if(SQLCODE == 0)
{

if(ord_row.o_num != last_ord)
EXEC SQL PUT ins_row;

last_ord = ord_row.o_num
continue;

}
break;

}
if(SQLCODE != 0 && SQLCODE != 100)

EXEC SQL ROLLBACK WORK;
else

EXEC SQL COMMIT WORK;
EXEC SQL CLOSE ins_row;
EXEC SQL CLOSE dup_row;

This example begins with an ordinary INSERT statement, which finds all the
nonduplicated rows of the table and inserts them into another table,
presumably created before the program started. That action leaves only the
duplicate rows. (In the demonstration database, the orders table has a unique
index and cannot have duplicate rows. Assume that this example deals with
some other database.)

The code in the previous example then declares two cursors. The first, called
dup_row, returns the duplicate rows in the table. Because dup_row is for
input only, it can use the ORDER BY clause to impose some order on the dupli-
cates other than the physical record order used in the example on page 6-7.
In this example, the duplicate rows are ordered by their dates (the oldest one
remains), but you can use any other order based on the data.
Modifying Data Through SQL Programs 6-13

An Insert Example
The second cursor, ins_row, is an insert cursor. This cursor takes advantage
of the ability to use a C structure, ord_row, to supply values for all columns
in the row.

The remainder of the code examines the rows that are returned through
dup_row. It inserts the first one from each group of duplicates into the new
table and disregards the rest.

For the sake of brevity, the preceding example uses the simplest kind of error
handling. If an error occurs before all rows have been processed, the sample
code rolls back the active transaction.

How Many Rows Were Affected?

When your program uses a cursor to select rows, it can test SQLCODE for 100
(or SQLSTATE for 02000), the end-of-data return code. This code is set to
indicate that no rows, or no more rows, satisfy the query conditions. For
databases that are not ANSI compliant, the end-of-data return code is set in
SQLCODE or SQLSTATE only following SELECT statements; it is not used
following DELETE, INSERT, or UPDATE statements. For ANSI-compliant
databases, SQLCODE is also set to 100 for updates, deletes, and inserts that
affect zero rows.

A query that finds no data is not a success. However, an UPDATE or DELETE
statement that happens to update or delete no rows is still considered a
success. It updated or deleted the set of rows that its WHERE clause said it
should; however, the set was empty.

In the same way, the INSERT statement does not set the end-of-data return
code even when the source of the inserted rows is a SELECT statement, and
the SELECT statement selected no rows. The INSERT statement is a success
because it inserted as many rows as it was asked to (that is, zero).

To find out how many rows are inserted, updated, or deleted, a program can
test the third element of SQLERRD. The count of rows is there, regardless of
the value (zero or negative) in SQLCODE.
6-14 Informix Guide to SQL: Tutorial

Using UPDATE
Using UPDATE
You can embed the UPDATE statement in a program in any of the forms
described in Chapter 4, “Modifying Data,” with the additional feature that
you can name host variables in expressions, both in the SET and WHERE
clauses. Moreover, a program can update the row that is addressed by a
cursor.

Using an Update Cursor
An update cursor permits you to delete or update the current row; that is, the
most recently fetched row. The following example in INFORMIX-ESQL/C
shows the declaration of an update cursor:

EXEC SQL
DECLARE names CURSOR FOR

SELECT fname, lname, company
FROM customer

FOR UPDATE;

The program that uses this cursor can fetch rows in the usual way.

EXEC SQL
FETCH names INTO :FNAME, :LNAME, :COMPANY;

If the program then decides that the row needs to be changed, it can do so.

if (strcmp(COMPANY, "SONY") ==0)
{
EXEC SQL

UPDATE customer
SET fname = 'Midori', lname = 'Tokugawa'
WHERE CURRENT OF names;

}

The words CURRENT OF names take the place of the usual test expressions in
the WHERE clause. In other respects, the UPDATE statement is the same as
usual, even including the specification of the table name, which is implicit in
the cursor name but still required.
Modifying Data Through SQL Programs 6-15

Using an Update Cursor
The Purpose of the Keyword UPDATE

The purpose of the keyword UPDATE in a cursor is to let the database server
know that the program can update (or delete) any row that it fetches. The
database server places a more demanding lock on rows that are fetched
through an update cursor and a less demanding lock when it fetches a row
for a cursor that is not declared with that keyword. This action results in
better performance for ordinary cursors and a higher level of concurrent use
in a multiprocessing system. (Levels of locks and concurrent use are
discussed in Chapter 7, “Programming for a Multiuser Environment.”)

Updating Specific Columns

The following example has updated specific columns of the preceding
example of an update cursor:

EXEC SQL
DECLARE names CURSOR FOR

SELECT fname, lname, company, phone
INTO :FNAME,:LNAME,:COMPANY,:PHONE FROM customer

FOR UPDATE OF fname, lname
END-EXEC.

Only the fname and lname columns can be updated through this cursor. A
statement such as the following one is rejected as an error:

EXEC SQL
UPDATE customer

SET company = 'Siemens'
WHERE CURRENT OF names

END-EXEC.

If the program attempts such an update, an error code is returned and no
update occurs. An attempt to delete with WHERE CURRENT OF is also
rejected because deletion affects all columns.

UPDATE Keyword Not Always Needed

The ANSI standard for SQL does not provide for the FOR UPDATE clause in a
cursor definition. When a program uses an ANSI-compliant database, it can
update or delete with any cursor.
6-16 Informix Guide to SQL: Tutorial

Cleaning Up a Table
Cleaning Up a Table
A final, hypothetical example of how to use an update cursor presents a
problem that should never arise with an established database but could arise
in the initial design phases of an application.

In the example, a large table named target is created and populated. A
character column, datcol, inadvertently acquires some null values. These
rows should be deleted. Furthermore, a new column, serials, is added to the
table with the ALTER TABLE statement. This column is to have unique integer
values installed. The following example shows the INFORMIX-ESQL/C code
you use to accomplish these tasks:

EXEC SQL BEGIN DECLARE SECTION;
char dcol[80];
short dcolint;
int sequence;
EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE target_row CURSOR FOR
SELECT datcol

INTO :dcol:dcolint
FROM target

FOR UPDATE OF serials;
EXEC SQL BEGIN WORK;
EXEC SQL OPEN target_row;
if (sqlca.sqlcode == 0) EXEC SQL FETCH NEXT target_row;
for(sequence = 1; sqlca.sqlcode == 0; ++sequence)
{

if (dcolint < 0) /* null datcol */
EXEC SQL DELETE WHERE CURRENT OF target_row;

else
EXEC SQL UPDATE target SET serials = :sequence

WHERE CURRENT OF target_row;
}
if (sqlca.sqlcode >= 0)

EXEC SQL COMMIT WORK;
else EXEC SQL ROLLBACK WORK;
Modifying Data Through SQL Programs 6-17

Summary
Summary
A program can execute the INSERT, DELETE, and UPDATE statements as
described in Chapter 4, “Modifying Data.” A program also can scan through
a table with a cursor, updating or deleting selected rows. It can also use a
cursor to insert rows, with the benefit that the rows are buffered and sent to
the database server in blocks.

In all these activities, you must make sure that the program detects errors and
returns the database to a known state when an error occurs. The most
important tool for doing this is the transaction. Without transaction logging,
it is more difficult to write programs that can recover from errors.
6-18 Informix Guide to SQL: Tutorial

7
Chapter
Programming for a Multiuser
Environment
Concurrency and Performance 7-3

Locking and Integrity 7-3

Locking and Performance 7-4

Concurrency Issues. 7-4

How Locks Work 7-6
Kinds of Locks 7-7
Lock Scope . 7-7

Database Locks 7-8
Table Locks 7-8
TABLE Lock Mode for Informix Dynamic Server

with AD and XP Options 7-9
Page, Row, and Key Locks. 7-10

Duration of a Lock. 7-11
Locks While Modifying 7-11

Setting the Isolation Level 7-12
Comparing SET TRANSACTION with SET ISOLATION 7-12
ANSI Read Uncommitted and Informix Dirty Read Isolation . . . 7-14
ANSI Read Committed and Informix Committed Read Isolation. . 7-14
Informix Cursor Stability Isolation 7-15
ANSI Serializable, ANSI Repeatable Read, and Informix

Repeatable Read Isolation 7-17

Controlling Data Modification with Access Modes 7-18

7-2 Infor
Setting the Lock Mode 7-19
Waiting for Locks 7-19
Not Waiting for Locks 7-19
Waiting a Limited Time 7-20
Handling a Deadlock 7-20
Handling External Deadlock 7-21

Simple Concurrency 7-21

Hold Cursors . 7-21

Summary . 7-23
mix Guide to SQL: Tutorial

If your database is contained in a single-user workstation and is not
connected on a network to other computers, your programs can modify data
freely. In all other cases, you must allow for the possibility that, while your
program is modifying data, another program is reading or modifying the
same data. This situation describes concurrency: two or more independent
uses of the same data at the same time. This chapter addresses concurrency,
locking, and isolation levels.

Concurrency and Performance
Concurrency is crucial to good performance in a multiprogramming system.
When access to the data is serialized so that only one program at a time can
use it, processing slows dramatically.

Locking and Integrity
Unless controls are placed on the use of data, concurrency can lead to a
variety of negative effects. Programs can read obsolete data, or modifications
can be lost even though they were apparently completed.

To prevent errors of this kind, the database server imposes a system of locks.
A lock is a claim, or reservation, that a program can place on a piece of data.
The database server guarantees that, as long as the data is locked, no other
program can modify it. When another program requests the data, the
database server either makes the program wait or turns it back with an error.
Programming for a Multiuser Environment 7-3

Locking and Performance
Locking and Performance
Because a lock serializes access to one piece of data, it reduces concurrency;
any other programs that want access to that data must wait. The database
server can place a lock on a single row, a disk page (which holds multiple
rows), a whole table, or an entire database. The more locks it places and the
larger the objects it locks, the more concurrency is reduced. The fewer the
locks and the smaller the locked objects, the greater concurrency and
performance can be.

The following sections discuss how a program can achieve the following
goals:

■ Place all the locks necessary to ensure data integrity

■ Lock the fewest, smallest pieces of data possible consistent with the
preceding goal

Concurrency Issues
To understand the hazards of concurrency, you must think in terms of
multiple programs, each executing at its own speed. Suppose that your
program is fetching rows through the following cursor:

EXEC SQL DECLARE sto_curse CURSOR FOR
SELECT * FROM stock

WHERE manu_code = 'ANZ';

The transfer of each row from the database server to the program takes time.
During and between transfers, other programs can perform other database
operations. At about the same time that your program fetches the rows
produced by that query, another user’s program might execute the following
update:

EXEC SQL UPDATE stock
SET unit_price = 1.15 * unit_price

WHERE manu_code = 'ANZ';
7-4 Informix Guide to SQL: Tutorial

Concurrency Issues
In other words, both programs are reading through the same table, one
fetching certain rows and the other changing the same rows. The following
possibilities are concerned with what happens next:

1. The other program finishes its update before your program fetches
its first row.

Your program shows you only updated rows.

2. Your program fetches every row before the other program has a
chance to update it.

Your program shows you only original rows.

3. After your program fetches some original rows, the other program
catches up and goes on to update some rows that your program has
yet to read; then it executes the COMMIT WORK statement.

Your program might return a mixture of original rows and updated
rows.

4. Same as number 3, except that after updating the table, the other
program issues a ROLLBACK WORK statement.

Your program can show you a mixture of original rows and updated
rows that no longer exist in the database.

The first two possibilities are harmless. In number 1, the update is complete
before your query begins. It makes no difference whether the update finished
a microsecond ago or a week ago.

In number 2, your query is, in effect, complete before the update begins. The
other program might have been working just one row behind yours, or it
might not start until tomorrow night; it does not matter.
Programming for a Multiuser Environment 7-5

How Locks Work
The last two possibilities, however, can be very important to the design of
some applications. In number 3, the query returns a mix of updated and
original data. That result can be detrimental in some applications. In others,
such as one that is taking an average of all prices, it might not matter at all.

In number 4, it can be disastrous if a program returns some rows of data that,
because their transaction was cancelled, can no longer be found in the table.

Another concern arises when your program uses a cursor to update or delete
the last-fetched row. Erroneous results occur with the following sequence of
events:

■ Your program fetches the row.

■ Another program updates or deletes the row.

■ Your program updates or deletes WHERE CURRENT OF names.

To control concurrent events such as these, use the locking and isolation level
features of the database server.

How Locks Work
Informix database servers support a complex, flexible set of locking features
that this section describes. For a summary of locking features, see your
Getting Started manual.
7-6 Informix Guide to SQL: Tutorial

Kinds of Locks
Kinds of Locks
The following table shows the types of locks that Informix database servers
support for different situations.

Lock Scope
You can apply locks to entire databases, entire tables, disk pages, single rows,
or index-key values. The size of the object that is being locked is referred to
as the scope of the lock (also called the lock granularity). In general, the larger
the scope of a lock, the more concurrency is reduced, but the simpler
programming becomes.

Lock Type Use

Shared A shared lock reserves its object for reading only. It
prevents the object from changing while the lock remains.
More than one program can place a shared lock on the
same object.

Exclusive An exclusive lock reserves its object for the use of a single
program. This lock is used when the program intends to
change the object.

An exclusive lock cannot be placed where any other kind
of lock exists. Once a lock has been placed, no other lock
can be placed on the same object.

Promotable A promotable lock establishes the intent to update. It can
only be placed where no other promotable or exclusive
lock exists. Promotable locks can be placed on records that
already have shared locks. When the program is about to
change the locked object, the promotable lock can be
promoted to an exclusive lock, but only if no other locks,
including shared locks, are on the record at the time the
lock would change from promotable to exclusive. If a
shared lock was on the record when the promotable lock
was set, the shared lock must be dropped before the
promotable lock can be promoted to an exclusive lock.
Programming for a Multiuser Environment 7-7

Lock Scope
Database Locks

You can lock an entire database. The act of opening a database places a shared
lock on the name of the database. A database is opened with the CONNECT,
DATABASE, or CREATE DATABASE statements. As long as a program has a
database open, the shared lock on the name prevents any other program from
dropping the database or putting an exclusive lock on it.

You can lock an entire database exclusively with the following statement:

DATABASE database name EXCLUSIVE

This statement succeeds if no other program has opened that database. Once
the lock is placed, no other program can open the database, even for reading,
because its attempt to place a shared lock on the database name fails.

A database lock is released only when the database closes. That action can be
performed explicitly with the DISCONNECT or CLOSE DATABASE statements
or implicitly by executing another DATABASE statement.

Because locking a database reduces concurrency in that database to zero, it
makes programming very simple; concurrent effects cannot happen.
However, you should lock a database only when no other programs need
access. Database locking is often used before applying massive changes to
data during off-peak hours.

Table Locks

You can lock entire tables. In some cases, this action is performed automati-
cally. The database server always locks an entire table while it performs any
of the following statements:

■ ALTER FRAGMENT

■ ALTER INDEX

■ ALTER TABLE

■ CREATE INDEX

■ DROP INDEX

■ RENAME COLUMN

■ RENAME TABLE
7-8 Informix Guide to SQL: Tutorial

Lock Scope
Dynamic Server with AD and XP Options does not support the ALTER INDEX
statement. ♦

Completion of the statement (or end of the transaction) releases the lock. An
entire table can also be locked automatically during certain queries.

You can use the LOCK TABLE statement to lock an entire table explicitly. This
statement allows you to place either a shared lock or an exclusive lock on an
entire table.

A shared table lock prevents any concurrent updating of that table while
your program is reading from it. The database server achieves the same
degree of protection by setting the isolation level, as described in the next
section, which allows greater concurrency than using a shared table lock.
However, all Informix database servers support the LOCK TABLE statement.

An exclusive table lock prevents any concurrent use of the table and,
therefore, can have a serious effect on performance if many other programs
are contending for the use of the table. Like an exclusive database lock, an
exclusive table lock is often used when massive updates are applied during
off-peak hours. For example, some applications do not update tables during
the hours of peak use. Instead, they write updates to an update journal. During
off-peak hours, that journal is read, and all updates are applied in a batch.

TABLE Lock Mode for Informix Dynamic Server with AD and XP
Options

With Dynamic Server with AD and XP Options, you can lock a table with
either the LOCK TABLE statement or the TABLE lock mode of the LOCK MODE
clause. All transactions that access a table whose lock mode is set to TABLE
acquire a table lock for that table, if the isolation level for the transaction
requires the transaction to acquire any locks at all.

Use the ALTER TABLE statement to switch a table from one lock mode to any
other lock mode (TABLE, PAGE, or ROW).

Whether you specify the TABLE lock mode for the LOCK MODE clause of a
CREATE TABLE or ALTER TABLE statement, or use a LOCK TABLE statement to
acquire a table lock, the effect is the same.

AD/XP

AD/XP
Programming for a Multiuser Environment 7-9

Lock Scope
The TABLE lock mode is particularly useful in a data-warehousing
environment where query efficiency increases because, instead of acquiring
(or trying to acquire, depending on the isolation level) page- or row-level
locks, the transaction acquires table locks. This can significantly reduce the
number of lock requests. The disadvantage of table locks is that they radically
reduce update concurrency, but in a data warehousing environment this is
generally not a problem.

Page, Row, and Key Locks

One row of a table is the smallest object that can be locked. A program can
lock one row or a selection of rows while other programs continue to work
on other rows of the same table.

The database server stores data in units called disk pages. A disk page contains
one or more rows. In some cases, it is better to lock a disk page than to lock
individual rows on it. Disk-storage methods for your database server are
described in your Administrator’s Guide. Tips for optimizing tables on disk
storage can be found in your Performance Guide.

You choose between locking by rows or locking by pages when you create the
table. The database server supports a LOCK MODE clause to specify either
page or row locking. You can specify lock mode in the CREATE TABLE
statement and later change it with the ALTER TABLE statement.

You use page and row locking identically. Whenever the database server
needs to lock a row, it locks either the row itself or the page it is on, depending
on the lock mode established for the table.

In certain cases, the database server has to lock a row that does not exist. In
effect, it locks the place in the table where the row would be if it did exist. The
database server does this by placing a lock on an index-key value. Key locks
are used identically to row locks. When the table uses row locking, key locks
are implemented as locks on imaginary rows. When the table uses page
locking, a key lock is placed on the index page that contains the key or that
would contain the key if it existed.
7-10 Informix Guide to SQL: Tutorial

Duration of a Lock
Duration of a Lock
The program controls the duration of a database lock. A database lock is
released when the database closes.

Depending on whether the database uses transactions, table lock durations
will vary. If the database does not use transactions (that is, if no transaction
log exists and you do not use COMMIT WORK statement), a table lock remains
until it is removed by the execution of the UNLOCK TABLE statement.

The duration of table, row, and index locks depends on what SQL statements
you use and on whether transactions are in use.

When you use transactions, the end of a transaction releases all table, row,
page, and index locks. When a transaction ends, all locks are released.

Locks While Modifying
When the database server fetches a row through an update cursor, it places a
promotable lock on the fetched row. If this action succeeds, the database
server knows that no other program can alter that row. Because a promotable
lock is not exclusive, other programs can continue to read the row. This helps
performance because the program that fetched the row can take some time
before it issues the UPDATE or DELETE statement, or it can simply fetch the
next row.

When it is time to modify a row, the database server obtains an exclusive lock
on the row. If it already had a promotable lock, it changes that lock to
exclusive status.

The duration of an exclusive row lock depends on whether transactions are
in use. If they are not in use, the lock is released as soon as the modified row
is written to disk. When transactions are in use, all such locks are held until
the end of the transaction. This action prevents other programs from using
rows that might be rolled back to their original state.
Programming for a Multiuser Environment 7-11

Setting the Isolation Level
When transactions are in use, a key lock is used whenever a row is deleted.
Using a key lock prevents the following error from occurring:

■ Program A deletes a row.

■ Program B inserts a row that has the same key.

■ Program A rolls back its transaction, forcing the database server to
restore its deleted row.

What is to be done with the row inserted by Program B?

By locking the index, the database server prevents a second program from
inserting a row until the first program commits its transaction.

The locks placed while the database reads various rows are controlled by the
current isolation level, which is discussed in the next section.

Setting the Isolation Level
The isolation level is the degree to which your program is isolated from the
concurrent actions of other programs. The database server offers a choice of
isolation levels. It implements them by setting different rules for how a
program uses locks when it is reading. (This description does not apply to
reads performed on update cursors.)

To set the isolation level, use either the SET ISOLATION or SET TRANSACTION
statement. The SET TRANSACTION statement also lets you set access modes.
For more information about access modes, see “Controlling Data Modifi-
cation with Access Modes” on page 7-18.

Comparing SET TRANSACTION with SET ISOLATION
The SET TRANSACTION statement complies with ANSI SQL-92. This statement
is similar to the Informix SET ISOLATION statement; however, the SET
ISOLATION statement is not ANSI compliant and does not provide access
modes.
7-12 Informix Guide to SQL: Tutorial

Comparing SET TRANSACTION with SET ISOLATION
The isolation levels that you can set with the SET TRANSACTION statement
are comparable to the isolation levels that you can set with the SET
ISOLATION statement, as the following table shows.

The major difference between the SET TRANSACTION and SET ISOLATION
statements is the behavior of the isolation levels within transactions. The SET
TRANSACTION statement can be issued only once for a transaction. Any
cursors opened during that transaction are guaranteed to have that isolation
level (or access mode if you are defining an access mode). With the SET
ISOLATION statement, after a transaction is started, you can change the
isolation level more than once within the transaction. The following
examples show both the SET ISOLATION and SET TRANSACTION statements:

SET ISOLATION

EXEC SQL BEGIN WORK;
EXEC SQL SET ISOLATION TO DIRTY READ;
EXEC SQL SELECT ... ;
EXEC SQL SET ISOLATION TO REPEATABLE READ;
EXEC SQL INSERT ... ;
EXEC SQL COMMIT WORK;

-- Executes without error

SET TRANSACTION

EXEC SQL BEGIN WORK;
EXEC SQL SET TRANSACTION ISOLATION LEVEL TO SERIALIZABLE;
EXEC SQL SELECT ... ;
EXEC SQL SET TRANSACTION ISOLATION LEVEL TO READ COMMITTED;
Error 876: Cannot issue SET TRANSACTION more than once in an
active transaction.

SET TRANSACTION Correlates to SET ISOLATION

Read Uncommitted Dirty Read

Read Committed Committed Read

Not Supported Cursor Stability

(ANSI) Repeatable Read
Serializable

(Informix) Repeatable Read
(Informix) Repeatable Read
Programming for a Multiuser Environment 7-13

ANSI Read Uncommitted and Informix Dirty Read Isolation
ANSI Read Uncommitted and Informix Dirty Read Isolation
The simplest isolation level, ANSI Read Uncommitted and Informix Dirty
Read, amounts to virtually no isolation. When a program fetches a row, it
places no locks, and it respects none; it simply copies rows from the database
without regard for what other programs are doing.

A program always receives complete rows of data; even under ANSI Read
Uncommitted or Informix Dirty Read isolation, a program never sees a row
in which some columns are updated and some are not. However, a program
that uses ANSI Read Uncommitted or Informix Dirty Read isolation
sometimes reads updated rows before the updating program ends its trans-
action. If the updating program later rolls back its transaction, the reading
program processed data that never really existed (number 4 in the list of
concurrency issues on page 7-5).

ANSI Read Uncommitted or Informix Dirty Read is the most efficient
isolation level. The reading program never waits and never makes another
program wait. It is the preferred level in any of the following cases:

■ All tables are static; that is, concurrent programs only read and never
modify data.

■ The table is held in an exclusive lock.

■ Only one program is using the table.

ANSI Read Committed and Informix Committed Read
Isolation
When a program requests the ANSI Read Committed or Informix Committed
Read isolation level, the database server guarantees that it never returns a
row that is not committed to the database. This action prevents reading data
that is not committed and that is subsequently rolled back.

ANSI Read Committed or Informix Committed Read is implemented simply.
Before it fetches a row, the database server tests to determine whether an
updating process placed a lock on the row; if not, it returns the row. Because
rows that are updated but not committed have locks on them, this test
ensures that the program does not read uncommitted data.
7-14 Informix Guide to SQL: Tutorial

Informix Cursor Stability Isolation
ANSI Read Committed or Informix Committed Read does not actually place
a lock on the fetched row, so this isolation level is almost as efficient as ANSI
Read Uncommitted or Informix Dirty Read. This isolation level is appro-
priate to use when each row of data is processed as an independent unit,
without reference to other rows in the same or other tables.

Informix Cursor Stability Isolation
The next level, Cursor Stability, is available only with the Informix SQL
statement SET ISOLATION.

When Cursor Stability is in effect, Dynamic Server places a lock on the latest
row fetched. It places a shared lock for an ordinary cursor or a promotable
lock for an update cursor. Only one row is locked at a time; that is, each time
a row is fetched, the lock on the previous row is released (unless that row is
updated, in which case the lock holds until the end of the transaction). ♦

When Cursor Stability is in effect, Dynamic Server with AD and XP Options
places a lock on one or more rows. It places a shared lock for an ordinary
cursor or a promotable lock for an update cursor.You use the
ISOLATION_LOCKS configuration parameter to specify the maximum
number of rows to be locked at any given time on any given scan. The
database server includes the user’s current row in the set of rows currently
locked. As the next row is read from the cursor, the previous row might or
might not be released. The user does not have control over which rows are
locked or when those rows are released. The database server guarantees only
that a maximum of n rows are locked at any given time for any given cursor
and that the current row is in the set of rows currently locked. (The default
value is one row.) For more information about the ISOLATION_LOCKS
parameter, see your Performance Guide and Administrator’s Guide. ♦

Cursor Stability ensures that a row does not change while the program
examines it. Such row stability is important when the program updates some
other table based on the data it reads from the row. Because of Cursor
Stability, the program is assured that the update is based on current infor-
mation. It prevents the use of stale data.

IDS

AD/XP
Programming for a Multiuser Environment 7-15

Informix Cursor Stability Isolation
The following example illustrates effective use of Cursor Stability isolation.
In terms of the demonstration database, Program A wants to insert a new
stock item for manufacturer Hero (HRO). Concurrently, Program B wants to
delete manufacturer HRO and all stock associated with it. The following
sequence of events can occur:

1. Program A, operating under Cursor Stability, fetches the HRO row
from the manufact table to learn the manufacturer code: This action
places a shared lock on the row.

2. Program B issues a DELETE statement for that row. Because of the
lock, the database server makes the program wait.

3. Program A inserts a new row in the stock table using the manufac-
turer code it obtained from the manufact table.

4. Program A closes its cursor on the manufact table or reads a different
row of it, releasing its lock.

5. Program B, released from its wait, completes the deletion of the row
and goes on to delete the rows of stock that use manufacturer code
HRO, including the row just inserted by Program A.

If Program A used a lesser level of isolation, the following sequence could
occur:

1. Program A reads the HRO row of the manufact table to learn the
manufacturer code. No lock is placed.

2. Program B issues a DELETE statement for that row. It succeeds.

3. Program B deletes all rows of stock that use manufacturer code HRO.

4. Program B ends.

5. Program A, not aware that its copy of the HRO row is now invalid,
inserts a new row of stock using the manufacturer code HRO.

6. Program A ends.

At the end, a row occurs in stock that has no matching manufacturer code in
manufact. Furthermore, Program B apparently has a bug; it did not delete the
rows that it was supposed to delete. Use of the Cursor Stability isolation level
prevents these effects.
7-16 Informix Guide to SQL: Tutorial

ANSI Serializable, ANSI Repeatable Read, and Informix Repeatable Read Isolation
The preceding scenario could be rearranged to fail even with Cursor Stability.
All that is required is for Program B to operate on tables in the reverse
sequence to Program A. If Program B deletes from stock before it removes the
row of manufact, no degree of isolation can prevent an error. Whenever this
kind of error is possible, all programs that are involved must use the same
sequence of access.

Because Cursor Stability locks only one row (Dynamic Server) or a specified
number of rows (Dynamic Server with AD and XP Options) at a time, it
restricts concurrency less than a table lock or database lock.

ANSI Serializable, ANSI Repeatable Read, and Informix
Repeatable Read Isolation
The definitions for ANSI Serializable, ANSI Repeatable Read, and Informix
Repeatable Read isolation levels are all the same.

The Repeatable Read isolation level asks the database server to put a lock on
every row the program examines and fetches. The locks that are placed are
shareable for an ordinary cursor and promotable for an update cursor. The
locks are placed individually as each row is examined. They are not released
until the cursor closes or a transaction ends.

Repeatable Read allows a program that uses a scroll cursor to read selected
rows more than once and to be sure that they are not modified or deleted
between readings. (Scroll cursors are described in Chapter 5, “Programming
with SQL.”) No lower isolation level guarantees that rows still exist and are
unchanged the second time they are read.

Repeatable Read isolation places the largest number of locks and holds them
the longest. Therefore, it is the level that reduces concurrency the most. If
your program uses this level of isolation, think carefully about how many
locks it places, how long they are held, and what the effect can be on other
programs.
Programming for a Multiuser Environment 7-17

Controlling Data Modification with Access Modes
In addition to the effect on concurrency, the large number of locks can be a
problem. The database server records the number of locks by each program
in a lock table. If the maximum number of locks is exceeded, the lock table
fills up, and the database server cannot place a lock. An error code is
returned. The person who administers an Informix database server system
can monitor the lock table and tell you when it is heavily used.

The isolation level in an ANSI-compliant database is automatically set to
Serializable. The isolation level of Serializable is required to ensure that
operations behave according to the ANSI standard for SQL.

Controlling Data Modification with Access Modes
Informix database servers support access modes. Access modes affect read
and write concurrency for rows within transactions and are set with the SET
TRANSACTION statement. You can use access modes to control data modifi-
cation among shared files.

Transactions are read-write by default. If you specify that a transaction is
read-only, that transaction cannot perform the following tasks:

■ Insert, delete, or update table rows

■ Create, alter, or drop any database object such as a schema, table,
temporary table, index, or stored procedure

■ Grant or revoke privileges

■ Update statistics

■ Rename columns or tables

Read-only access mode prohibits updates.

You can execute stored procedures in a read-only transaction as long as the
procedure does not try to perform any restricted statements.
7-18 Informix Guide to SQL: Tutorial

Setting the Lock Mode
Setting the Lock Mode
The lock mode determines what happens when your program encounters
locked data. One of the following situations occurs when a program attempts
to fetch or modify a locked row:

■ The database server immediately returns an error code in SQLCODE
or SQLSTATE to the program.

■ The database server suspends the program until the program that
placed the lock removes the lock.

■ The database server suspends the program for a time and then, if the
lock is not removed, the database server sends an error-return code
to the program.

You choose among these results with the SET LOCK MODE statement.

Waiting for Locks
If you prefer to wait (this choice is best for many applications), execute the
following statement:

SET LOCK MODE TO WAIT

When this lock mode is set, your program usually ignores the existence of
other concurrent programs. When your program needs to access a row that
another program has locked, it waits until the lock is removed, then proceeds.
The delays are usually imperceptible.

Not Waiting for Locks
The disadvantage of waiting for locks is that the wait might become long
(although properly designed applications should hold their locks briefly).
When the possibility of a long delay is not acceptable, a program can execute
the following statement:

SET LOCK MODE TO NOT WAIT
Programming for a Multiuser Environment 7-19

Waiting a Limited Time
When the program requests a locked row, it immediately receives an error
code (for example, error -107 Record is locked), and the current SQL
statement terminates. The program must roll back its current transaction and
try again.

The initial setting is not waiting when a program starts up. If you are using
SQL interactively and see an error related to locking, set the lock mode to
wait. If you are writing a program, consider making that one of the first
embedded SQL statements that the program executes.

Waiting a Limited Time
You can ask the database server to set an upper limit on a wait. You can issue
the following statement:

SET LOCK MODE TO WAIT 17

This statement places an upper limit of 17 seconds on the length of any wait.
If a lock is not removed in that time, the error code is returned.

Handling a Deadlock
A deadlock is a situation in which a pair of programs block the progress of each
other. Each program has a lock on some object that the other program wants
to access. A deadlock arises only when all programs concerned set their lock
modes to wait for locks.

An Informix database server detects deadlocks immediately when they
involve only data at a single network server. It prevents the deadlock from
occurring by returning an error code (error -143 ISAM error: deadlock
detected) to the second program to request a lock. The error code is the one
the program receives if it sets its lock mode to not wait for locks. If your
program receives an error code related to locks even after it sets lock mode to
wait, you know the cause is an impending deadlock.
7-20 Informix Guide to SQL: Tutorial

Handling External Deadlock
Handling External Deadlock
A deadlock can also occur between programs on different database servers.
In this case, the database server cannot instantly detect the deadlock. (Perfect
deadlock detection requires excessive communications traffic among all
database servers in a network.) Instead, each database server sets an upper
limit on the amount of time that a program can wait to obtain a lock on data
at a different database server. If the time expires, the database server assumes
that a deadlock was the cause and returns a lock-related error code.

In other words, when external databases are involved, every program runs
with a maximum lock-waiting time. The database administrator can set or
modify the maximum for the database server.

Simple Concurrency
If you are not sure which choice to make concerning locking and concurrency,
and if your application is straightforward, have your program execute the
following statements when it starts up (immediately after the first DATABASE
statement):

SET LOCK MODE TO WAIT
SET ISOLATION TO REPEATABLE READ

Ignore the return codes from both statements. Proceed as if no other
programs exist. If no performance problems arise, you do not need to read
this section again.

Hold Cursors
When transaction logging is used, all database servers (except Dynamic
Server with AD and XP Options) guarantee that anything done within a trans-
action can be rolled back at the end of it. To handle transactions reliably, the
database server normally applies the following rules:

■ When a transaction ends all cursors are closed.

■ When a transaction ends all locks are released.
Programming for a Multiuser Environment 7-21

Hold Cursors
With Dynamic Server with AD and XP Options, locks might not be released
at the end of a transaction. To demonstrate how to acquire a table lock,
suppose the database server acquires a lock on all coservers that store a part
of the table. If a transaction first acquires a SHARED mode table lock and tries
to upgrade to EXCLUSIVE mode table lock, locks might not be released at the
end of the transaction. This can happen if the transaction performs a SELECT
and then performs an INSERT on a table with lock mode TABLE. In this case,
the upgrade might succeed on some coservers and fail on other coservers. No
attempt is made to roll back the successful upgrades, which means that the
transaction might end with EXCLUSIVE locks on the table for some
coservers. ♦

The rules that are used to handle transactions reliably are normal with most
database systems that support transactions, and they do not cause any
trouble for most applications. However, circumstances exist in which using
standard transactions with cursors is not possible. For example, the following
code works fine without transactions. However, when transactions are
added, closing the cursor conflicts with using two cursors simultaneously.

EXEC SQL DECLARE master CURSOR FOR . . .
EXEC SQL DECLARE detail CURSOR FOR . . . FOR UPDATE
EXEC SQL OPEN master;
while(SQLCODE == 0)
{

EXEC SQL FETCH master INTO . . .
if(SQLCODE == 0)
{

EXEC SQL BEGIN WORK;
EXEC SQL OPEN detail USING . . .
EXEC SQL FETCH detail . . .
EXEC SQL UPDATE . . . WHERE CURRENT OF detail
EXEC SQL COMMIT WORK;

}
}
EXEC SQL CLOSE master;

In this design, one cursor is used to scan a table. Selected records are used as
the basis for updating a different table. The problem is that when each update
is treated as a separate transaction (as the pseudocode in the previous
example shows), the COMMIT WORK statement following the UPDATE closes
all cursors, including the master cursor.

AD/XP
7-22 Informix Guide to SQL: Tutorial

Summary
The simplest alternative is to move the COMMIT WORK and BEGIN WORK
statements to be the last and first statements, respectively, so that the entire
scan over the master table is one large transaction. Treating the scan of the
master table as one large transaction is sometimes possible, but it can become
impractical if many rows need to be updated. The number of locks can be too
large, and they are held for the duration of the program.

A solution that Informix database servers support is to add the keywords
WITH HOLD to the declaration of the master cursor. Such a cursor is referred
to as a hold cursor and is not closed at the end of a transaction. The database
server still closes all other cursors, and it still releases all locks, but the hold
cursor remains open until it is explicitly closed.

Before you attempt to use a hold cursor, you must be sure that you
understand the locking mechanism described here, and you must also under-
stand the programs that are running concurrently. Whenever COMMIT WORK
is executed, all locks are released, including any locks placed on rows fetched
through the hold cursor.

The removal of locks has little importance if the cursor is used as intended,
for a single forward scan over a table. However, you can specify WITH HOLD
for any cursor, including update cursors and scroll cursors. Before you do
this, you must understand the implications of the fact that all locks (including
locks on entire tables) are released at the end of a transaction.

Summary
Whenever multiple programs have access to a database concurrently (and
when at least one of them can modify data), all programs must allow for the
possibility that another program can change the data even as they read it. The
database server provides a mechanism of locks and isolation levels that
usually allow programs to run as if they were alone with the data.
Programming for a Multiuser Environment 7-23

n
II
Using Advanced SQL
Se
ct

io

8
Chapter
Creating and Using Stored
Procedures
Introduction to Stored Procedures and SPL 8-3
What You Can Do with Stored Procedures 8-4
Relationship Between SQL and a Stored Procedure 8-4

Stored-Procedure Behavior for Dynamic Server
with AD and XP Options 8-5

Creating and Using Stored Procedures 8-6
Creating a Procedure 8-6
Creating a Procedure in a Program 8-7
Commenting and Documenting a Procedure 8-8
Diagnosing Compile-Time Errors 8-8

Using DB-Access to Find Syntax Errors in a Procedure 8-8
Using an SQL API to Find Syntax Errors in a Procedure . . . 8-9

Looking at Compile-Time Warnings 8-10
Location of the Listing File 8-10
Viewing the Listing File 8-11

Generating the Text or Documentation. 8-11
Looking at the Procedure Text 8-11
Looking at the Procedure Documentation 8-11

Executing a Procedure 8-12
Executing a Stored Procedure Dynamically 8-14
Debugging a Procedure 8-14

Re-creating a Procedure 8-16

Privileges on Stored Procedures 8-17
Privileges Necessary at Creation 8-18
Privileges Necessary at Execution 8-18

Owner-Privileged Procedures 8-18
DBA-Privileged Procedures 8-19
Privileges and Nested Procedures 8-19

Revoking Privileges 8-20

8-2 Infor
Variables and Expressions 8-20
SPL Variables 8-20

Local Variables. 8-20
Global Variables 8-21
Format of Variables 8-21
Defining Variables 8-21
Data Types for Variables 8-22
Using Subscripts with Variables 8-22
Scope of Variables. 8-22
Variable and Keyword Ambiguity 8-23

SPL Expressions 8-25
Assigning Values to Variables 8-25

Program Flow Control 8-26
Branching . 8-26
Looping . 8-27
Function Handling. 8-28

Calling Procedures Within a Procedure 8-28
Running an Operating-System Command from a Procedure . . 8-28
Calling a Procedure Recursively. 8-29

Passing Information to and from a Procedure 8-29
Returning Results 8-30

Specifying Return Data Types 8-30
Returning the Value 8-30
Returning More Than One Set of Values from a Procedure. . . 8-31

Exception Handling. 8-32
Trapping an Error and Recovering 8-32
Scope of Control of an ON EXCEPTION Statement 8-33
User-Generated Exceptions 8-34

Simulating SQL Errors 8-34
Using RAISE EXCEPTION to Exit Nested Code 8-35

Summary . 8-36
mix Guide to SQL: Tutorial

You can use SQL and some additional statements that belong to the
Stored Procedure Language (SPL) to write procedures and store the proce-
dures in the database. These stored procedures are effective tools for
controlling SQL activity. This chapter shows how to write stored procedures.
To help you learn how to write them, examples of working stored procedures
are provided.

The syntax for each SPL statement is described in the Informix Guide to SQL:
Syntax. The syntax includes a description of the SPL statement and examples
that show how to use the statement.

Introduction to Stored Procedures and SPL
In SQL, a stored procedure is a user-defined function. Anyone who has the
Resource privilege on a database can create a stored procedure. Once the
stored procedure is created, it is stored in an executable format in the
database as an object of the database. You can use stored procedures to
perform any function that you can perform in SQL as well as to expand what
you can accomplish with SQL alone.

You use SQL and SPL statements to write a stored procedure. SPL statements
can be used only inside the CREATE PROCEDURE and CREATE PROCEDURE
FROM statements. The CREATE PROCEDURE statement is available with
DB-Access and Relational Object Manager. Both the CREATE PROCEDURE
and CREATE PROCEDURE FROM statements are available with SQL APIs such
as INFORMIX-ESQL/C.
Creating and Using Stored Procedures 8-3

What You Can Do with Stored Procedures
What You Can Do with Stored Procedures
You can accomplish a wide range of objectives with stored procedures,
including improving database performance, simplifying writing
applications, and limiting or monitoring access to data.

Because a stored procedure is stored in an executable format, you can use it
to execute frequently repeated tasks to improve performance. When you
execute a stored procedure rather than straight SQL code you can bypass
repeated parsing, validity checking, and query optimization.

Because a stored procedure is an object in the database, it is available to every
application that runs on the database. Several applications can use the same
stored procedure, so development time for applications is reduced.

You can write a stored procedure to be run with the DBA privilege by a user
who does not have the DBA privilege. This feature allows you to limit and
control access to data in the database. Alternatively, a stored procedure can
monitor the users who access certain tables or data. For more information
about how to use stored procedures to control access to data, see the Informix
Guide to Database Design and Implementation.

Relationship Between SQL and a Stored Procedure
You can call a procedure in data-manipulation SQL statements and issue SQL
statements within a procedure. For a complete list of data-manipulation SQL
statements, see the Informix Guide to SQL: Syntax.

You use a stored procedure in a data-manipulation SQL statement to supply
values to that statement. For example, you can use a procedure to perform
the following actions:

■ Supply values to be inserted into a table

■ Supply a value that makes up part of a condition clause in a SELECT,
DELETE, or UPDATE statement

These actions are two possible uses of a procedure in a data-manipulation
statement, but others exist. In fact, any expression in a data-manipulation
SQL statement can consist of a procedure call.
8-4 Informix Guide to SQL: Tutorial

Stored-Procedure Behavior for Dynamic Server with AD and XP Options
You can also issue SQL statements in a stored procedure to hide those SQL
statements from a database user. Rather than having all users learn how to
use SQL, one experienced SQL user can write a stored procedure to
encapsulate an SQL activity and let others know that the procedure is stored
in the database so that they can execute it.

Stored-Procedure Behavior for Dynamic Server with
AD and XP Options
For stored procedures in Informix Dynamic Server with Advanced Decision
Support and Extended Parallel Options, the following features behave differ-
ently than they do in other Informix database servers:

■ SYSPROCPLAN system catalog table

All Informix database servers modify the SYSPROCPLAN system
catalog table whenever a stored procedure is created. For all
database servers except Dynamic Server with AD and XP Options,
the SYSPROCPLAN system catalog table is also modified during
execution of a stored procedure, if the stored procedure generates
any new query-execution plans during execution. However,
Dynamic Server with AD and XP Options does not modify the
SYSPROCPLAN table when execution of a stored procedure results in
new query-execution plans. For example, if plans are deleted from
the SYSPROCPLAN system catalog table, and the procedure is
executed from any coserver, the plans are not restored in
SYSPROCPLAN. However, an UPDATE STATISTICS FOR PROCEDURE
statement that is executed from any coserver updates the plans in
SYSPROCPLAN.

■ Procedure calls

A procedure call can be made only to procedures that are in the
current database and the current database server.

AD/XP
Creating and Using Stored Procedures 8-5

Creating and Using Stored Procedures
Creating and Using Stored Procedures
To write a stored procedure, put the SQL statements that you want to run as
part of the procedure in the statement block in a CREATE PROCEDURE
statement. You can use SPL statements to control the flow of the operation in
the procedure. SPL statements include IF, FOR, and others, and they are
described in the Informix Guide to SQL: Syntax. The CREATE PROCEDURE and
CREATE PROCEDURE FROM statements are also described in the Informix
Guide to SQL: Syntax.

Creating a Procedure
To create a stored procedure with DB-Access or Relational Object Manager,
issue the CREATE PROCEDURE statement, including all the statements that
are part of the procedure in the statement block. For example, to create a
procedure that reads a customer address, use a statement such as the
following one:

CREATE PROCEDURE read_address (lastname CHAR(15)) -- one
argument

RETURNING CHAR(15), CHAR(15), CHAR(20), CHAR(15),CHAR(2)
CHAR(5); -- 6 items

DEFINE p_lname,p_fname, p_city CHAR(15); --define each
procedure variable

DEFINE p_add CHAR(20);
DEFINE p_state CHAR(2);
DEFINE p_zip CHAR(5);

SELECT fname, address1, city, state, zipcode
INTO p_fname, p_add, p_city, p_state, p_zip
FROM customer
WHERE lname = lastname;

RETURN p_fname, lastname, p_add, p_city, p_state, p_zip;
--6 items

END PROCEDURE
8-6 Informix Guide to SQL: Tutorial

Creating a Procedure in a Program
DOCUMENT 'This procedure takes the last name of a customer
as', --brief description
'its only argument. It returns the full name and address
of the customer.'

WITH LISTING IN 'pathname' -- modify this pathname according
-- to the conventions that your operating system requires

-- compile-time warnings go here
; -- end of the procedure read_address

Creating a Procedure in a Program
To use an SQL API to create a stored procedure, put the text of the CREATE
PROCEDURE statement in a file. Use the CREATE PROCEDURE FROM
statement, and refer to that file to compile the procedure. For example, to
create a procedure to read a customer name, you can use a statement such as
the one in the previous example and store it in a file. If the file is named
read_add_source, the following statement compiles the read_address
procedure:

CREATE PROCEDURE FROM 'read_add_source';

The following example shows how the previous SQL statement looks in an
ESQL/C program:

/* This program creates whatever procedure is in *
 * the file 'read_add_source'.
 */
#include <stdio.h>
EXEC SQL include sqlca;
EXEC SQL include sqlda;
EXEC SQL include datetime;
/* Program to create a procedure from the pwd */

main()
{
EXEC SQL database play;
EXEC SQL create procedure from 'read_add_source';
}

Creating and Using Stored Procedures 8-7

Commenting and Documenting a Procedure
Commenting and Documenting a Procedure
Observe that the read_address procedure in the previous example includes
comments and a DOCUMENT clause. The programmer incorporates the
comments into the text of the procedure. Any characters that follow a double
hyphen (--) are considered to be a comment. You can use the double hyphen
anywhere in a line.

The text in the DOCUMENT clause should give a summary of the procedure.
To extract this text, query the sysprocbody system catalog table. For
information about how to read the DOCUMENT clause, see “Looking at the
Procedure Documentation” on page 8-11.

Diagnosing Compile-Time Errors
When you issue a CREATE PROCEDURE or CREATE PROCEDURE FROM
statement, the statement fails if a syntax error occurs in the body of the
procedure. The database server stops processing the text of the procedure
and returns the location of the error.

Using DB-Access to Find Syntax Errors in a Procedure

If a procedure that you create with DB-Access or Relational Object Manager
has a syntax error, when you choose the Modify option of the SQL menu, the
cursor sits on the line that contains the offending syntax.
8-8 Informix Guide to SQL: Tutorial

Diagnosing Compile-Time Errors
Using an SQL API to Find Syntax Errors in a Procedure

If a procedure that you created with an SQL API has a syntax error, the
CREATE PROCEDURE statement fails and sets SQLCA and SQLSTATE values.
The database server sets the SQLCODE field of the SQLCA to a negative
number and sets the fifth element of the SQLERRD array to the character offset
into the file. The following list shows the particular fields of the SQLCA for
ESQL/C:

■ sqlca.sqlcode (SQLCODE)

■ sqlca.sqlerrd[4]

In case of syntax error, the database server sets SQLSTATE to 42000.

The following example shows how to trap for a syntax error when you are
creating a procedure. It also shows how to display a message and character
position where the error occurred.

#include <stdio.h>
EXEC SQL include sqlca;
EXEC SQL include sqlda;
EXEC SQL include datetime;
/* Program to create a procedure from procfile in pwd */

main()
{
long char_num;

EXEC SQL database play;
EXEC SQL create procedure from 'procfile';
if (sqlca.sqlcode != 0)
{

printf("\nsqlca.sqlcode = %ld\n", sqlca.sqlcode);
 char_num = sqlca.sqlerrd[4];
 printf("\nError in creating read_address. Check
character position

%ld\n", char_num);
}
.
.
.

In the previous example, if the CREATE PROCEDURE FROM statement fails,
the program displays a message in addition to the character position at which
the syntax error occurred.
Creating and Using Stored Procedures 8-9

Looking at Compile-Time Warnings
Looking at Compile-Time Warnings
If the database server detects a potential problem, but the procedure is
syntactically correct, the database server generates a warning and places it in
a listing file. You can examine this file to check for potential problems before
you execute the procedure.

To obtain the listing of compile-time warnings for your procedure, use the
WITH LISTING IN clause in your CREATE PROCEDURE statement, as the
following example shows:

CREATE PROCEDURE read_address (lastname CHAR(15)) -- one argument
RETURNING CHAR(15), CHAR(15), CHAR(20), CHAR(15), CHAR(2), CHAR(5); -- 6 items
.
.
.
WITH LISTING IN 'pathname' -- modify this pathname according to the conventions

 -- that your operating system requires

--compile-time warnings go here
; -- end of the procedure read_address

Location of the Listing File

If you are working on a network, the listing file is created on the computer
where the database resides. If you provide an absolute pathname and
filename for the file, the file is created where you specify.

If you provide a relative pathname for the listing file, the file is created in
your home directory on the computer where the database resides. (If you do
not have a home directory, the file is created in the root directory.) ♦

If you provide a relative pathname for the listing file, the default directory is
your current working directory if the database is on the local computer.
Otherwise the default directory is %INFORMIXDIR%\bin. ♦

Viewing the Listing File

After you create the procedure, you can view the file that is specified in the
WITH LISTING IN clause to see the warnings that it contains.

UNIX

WIN NT
8-10 Informix Guide to SQL: Tutorial

Generating the Text or Documentation
Generating the Text or Documentation
Once you create the procedure, it is stored in the sysprocbody system catalog
table. The sysprocbody system catalog table contains the executable
procedure as well as the text of the original CREATE PROCEDURE statement
and the documentation text.

Looking at the Procedure Text

To generate the text of the procedure, select the data column from the
sysprocbody system catalog table. The following SELECT statement reads the
read_address procedure text:

SELECT data FROM informix.sysprocbody
WHERE datakey = 'T' -- find text lines
AND
procid = (SELECT procid FROM informix.sysprocedures

WHERE informix.sysprocedures.procname = 'read_address')

Looking at the Procedure Documentation

If you want to view only the documenting text of the procedure, use the
following SELECT statement to read the documentation string. The documen-
tation lines found in the following example are those in the DOCUMENT
clause of the CREATE PROCEDURE statement:

SELECT data FROM informix.sysprocbody
WHERE datakey = 'D' -- find documentation lines
AND
procid = (SELECT procid FROM informix.sysprocedures

WHERE informix.sysprocedures.procname = 'read_address')
Creating and Using Stored Procedures 8-11

Executing a Procedure
Executing a Procedure
You can execute a procedure in several ways. You can use either the SQL
statement EXECUTE PROCEDURE or the LET or CALL SPL statement. In
addition, you can execute procedures dynamically, as described in
“Executing a Stored Procedure Dynamically” on page 8-14.

The read_address procedure returns the full name and address of a customer.
To run read_address on a customer called Putnum with EXECUTE
PROCEDURE, enter the following statement:

EXECUTE PROCEDURE read_address ('Putnum');

The read_address procedure returns values; therefore, if you are executing a
procedure from an SQL API or another procedure, you must use an INTO
clause with host variables to receive the data. For example, executing the
read_address procedure in an ESQL/C program is accomplished with the
code segment that the following example shows:

#include <stdio.h>
EXEC SQL include sqlca;
EXEC SQL include sqlda;
EXEC SQL include datetime;
/* Program to execute a procedure in the database named 'play'
*/

main()
{
EXEC SQL BEGIN DECLARE SECTION;

char lname[16], fname[16], address[21];
char city[16], state[3], zip[6];

EXEC SQL END DECLARE SECTION;
EXEC SQL connect to 'play';
EXEC SQL EXECUTE PROCEDURE read_address ('Putnum')

INTO :lname, :fname, :address, :city, :state, :zip;
if (sqlca.sqlcode != 0)

 printf("\nFailure on execute");
}

8-12 Informix Guide to SQL: Tutorial

Executing a Procedure
If you are executing a procedure in another procedure, you can use the SPL
statements CALL or LET to run the procedure. To use the CALL statement with
the read_address procedure, you can use the code in the following example:

CREATE PROCEDURE address_list ()

DEFINE p_lname, p_fname, p_city CHAR(15);
DEFINE p_add CHAR(20);
DEFINE p_state CHAR(2);
DEFINE p_zip CHAR(5);
.
.
.
CALL read_address ('Putnum') RETURNING p_fname, p_lname,

p_add, p_city, p_state, p_zip;
.
.
.
-- use the returned data some way

END PROCEDURE;

The following example shows how to use the LET statement to assign values
to procedural variables through a procedure call:

CREATE PROCEDURE address_list ()

DEFINE p_lname, p_fname, p_city CHAR(15);
DEFINE p_add CHAR(20);
DEFINE p_state CHAR(2);
DEFINE p_zip CHAR(5);
.
.
.
LET p_fname, p_lname,p_add, p_city, p_state, p_zip =

read_address ('Putnum');
.
.
.
-- use the returned data some way

END PROCEDURE;

With Dynamic Server with AD and XP Options, you can make a procedure
call only to procedures that are in the current database and the current
database server. ♦

AD/XP
Creating and Using Stored Procedures 8-13

Executing a Stored Procedure Dynamically
Executing a Stored Procedure Dynamically
You can prepare an EXECUTE PROCEDURE statement with the ALLOCATE
DESCRIPTOR and GET DESCRIPTOR statements in an ESQL/C program. You
can pass parameters to the stored procedure in the same manner as the
SELECT statement and can pass them at runtime or compile time. For an
example of how to execute a stored procedure dynamically, see the
INFORMIX-ESQL/C Programmer’s Manual. For information about dynamic
SQL and how to use a prepared SELECT statement, see Chapter 5,
“Programming with SQL.”

Debugging a Procedure
Once you successfully create and run a procedure, you can encounter logic
errors. If the procedure contains logic errors, use the TRACE statement to help
find them. You can trace the values of the following procedural entities:

■ Variables

■ Procedure arguments

■ Return values

■ SQL error codes

■ ISAM error codes

To generate a list of traced values, first use the SQL statement SET DEBUG FILE
to name the file that is to contain the traced output. When you create your
procedure, include the TRACE statement in one of its forms.

The following methods specify the form of TRACE output.

Statement Action

TRACE ON Traces all statements except SQL statements. Prints the
contents of variables are printed before they are used.
Traces procedure calls and returned values.

TRACE PROCEDURE Traces only the procedure calls and returned values.

TRACE expression Prints a literal or an expression. If necessary, the value of
the expression is calculated before it is sent to the file.
8-14 Informix Guide to SQL: Tutorial

Debugging a Procedure
The following example shows how you can use the TRACE statement with a
version of the read_address procedure. This example shows several SPL
statements that have not been discussed, but the entire example demon-
strates how the TRACE statement can help you monitor execution of the
procedure.

CREATE PROCEDURE read_many (lastname CHAR(15))
RETURNING CHAR(15), CHAR(15), CHAR(20), CHAR(15),CHAR(2),

CHAR(5);

DEFINE p_lname,p_fname, p_city CHAR(15);
DEFINE p_add CHAR(20);
DEFINE p_state CHAR(2);
DEFINE p_zip CHAR(5);
DEFINE lcount, i INT;

LET lcount = 1;

TRACE ON; -- Every expression will be traced from here on
TRACE 'Foreach starts';-- A trace statement with a

literal
FOREACH
SELECT fname, lname, address1, city, state, zipcode

 INTO p_fname, p_lname, p_add, p_city, p_state, p_zip
 FROM customer
 WHERE lname = lastname

RETURN p_fname, p_lname, p_add, p_city, p_state, p_zip
WITH RESUME;

LET lcount = lcount + 1; -- count of returned addresses
END FOREACH;

TRACE 'Loop starts'; -- Another literal
FOR i IN (1 TO 5)

 BEGIN
 RETURN i , i+1, i*i, i/i, i-1,i with resume;
 END

END FOR;

END PROCEDURE;

Each time you execute the traced procedure, entries are added to the file you
specified using the SET DEBUG FILE statement. To see the debug entries, view
the output file with any text editor.
Creating and Using Stored Procedures 8-15

Debugging a Procedure
The following table contains some of the output that the procedure in the
previous example generates. Next to each traced statement is an explanation
of its contents.

Re-creating a Procedure

If a procedure exists in a database, you must drop it explicitly using the DROP
PROCEDURE statement before you can create another procedure with the
same name. If you debug your procedure and attempt to use the CREATE
PROCEDURE statement with the same procedure name again, the attempt
fails unless you first drop the existing procedure from the database.

Statement Action

TRACE ON Echoes TRACE ON statement.

TRACE Foreach
starts

Traces expression, in this case, the literal string Foreach
starts.

start select
cursor

Provides notification that a cursor is opened to handle a
FOREACH loop.

select cursor
iteration

Provides notification of the start of each iteration of the
select cursor.

expression:
(+lcount, 1)

Evaluates the encountered expression, (lcount+1), to 2.

let lcount = 2 Echoes each LET statement with the value.
8-16 Informix Guide to SQL: Tutorial

Privileges on Stored Procedures
Privileges on Stored Procedures
A stored procedure resides in the database in which it is created. As with
other database objects, you need appropriate privileges to create a stored
procedure. In addition, you need appropriate privileges to execute a stored
procedure.

Two types of stored procedures exist in a database: DBA-privileged and
owner-privileged. When you create the procedure, you specify which type it
is. You need different privileges to create and execute these two types of
procedures. The differences between DBA-privileged and owner-privileged
procedures are summarized in the following table and described in the
sections that follow.

DBA-Privileged
Procedure Owner-Privileged Procedure

Can be created by: Any user with the DBA
privilege

Any user with at least the Resource privilege

Users who have the Execute
privilege by default:

Any user with the DBA
privilege

Not ANSI compliant. Public (any user with
Connect database privilege)

ANSI compliant. The procedure owner and any
user with the DBA privilege

Privileges the procedure
owner or WITH clause must
grant to another user to
enable that user to run a
procedure:

Execute privilege Execute privilege and privileges on underlying
objects

If owner has privileges on underlying objects
with the GRANT WITH option, only the Execute
privilege is required.
Creating and Using Stored Procedures 8-17

Privileges Necessary at Creation
Privileges Necessary at Creation
Only users who have the DBA privilege can create a DBA-privileged
procedure. To create an owner-privileged procedure, you need to have at
least the Resource privilege. For more information about how to grant and
limit access to your database, see the Informix Guide to Database Design and
Implementation.

Privileges Necessary at Execution
To run a procedure, you always need the Execute privilege for that procedure
or DBA database privileges. The database server implicitly grants certain
privileges to users, depending on whether the procedure is a DBA-mode
procedure and if the database is ANSI compliant.

If the procedure is owner privileged, the database server grants the Execute
privilege to Public. If the database is ANSI compliant, the database server
grants only the Execute privilege to the owner and users with DBA status.

If the procedure is DBA privileged, the database server grants the Execute
privilege to all users who have the DBA privilege.

Owner-Privileged Procedures

When you execute an owner-privileged procedure, the database server
checks the existence of any referenced objects. In addition, the database
server verifies that you have the necessary privileges on the referenced
objects.

If you execute a procedure that references only objects that you own, no
privilege conflicts occurs. If you do not own the referenced objects, and you
execute a procedure that contains SELECT statements, you risk generating a
conflict.

If the owner has the necessary privileges with the WITH GRANT option, those
privileges are automatically conferred to you when the owner issues a
GRANT EXECUTE statement.
8-18 Informix Guide to SQL: Tutorial

Privileges Necessary at Execution
The user who runs the procedure does not own the unqualified objects
created in the course of executing the procedure. The owner of the procedure
owns the unqualified objects. The following example shows lines in an
owner-privileged stored procedure that create two tables. If this procedure is
owned by tony, and a user marty runs the procedure, the first table,
gargantuan, is owned by tony. The second table, tiny, is owned by libby. The
table gargantuan is an unqualified name; therefore, tony owns the table
gargantuan. The table tiny is qualified by the owner libby, so libby owns the
table tiny.

CREATE PROCEDURE tryit()
.
.
.
CREATE TABLE gargantuan (col1 INT, col2 INT, col3 INT);
CREATE TABLE libby.tiny (col1 INT, col2 INT, col3 INT);

END PROCEDURE;

DBA-Privileged Procedures

When you execute a DBA-privileged procedure, you assume the privileges of
a DBA for the duration of the procedure. A DBA-privileged procedure acts as
if the user who runs the procedure is first granted DBA privilege, then
executes each statement of the procedure manually, and finally has DBA
privilege revoked.

Objects created in the course of running a DBA procedure are owned by the
user who runs the procedure, unless the data definition statement in the
procedure explicitly names the owner to be someone else.

Privileges and Nested Procedures

DBA-privileged status is not inherited by a called procedure. For example, if
a DBA-privileged procedure executes an owner-privileged procedure, the
owner-privileged procedure does not run as a DBA procedure. If an owner-
privileged procedure calls a DBA-privileged procedure, the statements
within the DBA-privileged procedure execute as they would within any
DBA-privileged procedure.
Creating and Using Stored Procedures 8-19

Revoking Privileges
Revoking Privileges
The owner of a procedure can revoke the Execute privilege from a user. If a
user loses the Execute privilege on a procedure, the Execute privilege is also
revoked from all users who were granted the Execute privilege by that user.

Variables and Expressions
This section discusses how to define and use variables in SPL. This section
also describes the differences between SPL and SQL expressions.

SPL Variables
You can use a variable in a stored procedure in several ways. You can use a
variable in a database query or other SQL statement wherever a constant is
expected. You can use a variable with SPL statements to assign and calculate
values, keep track of the number of rows returned from a query, and execute
a loop as well as handle other tasks.

The value of a variable is held in memory; the variable is not a database
object. Hence, rolling back a transaction does not restore values of procedural
variables.

You can define a variable to be either local or global. A variable is local by
default. The following sections describe the differences between the two
types of variables.

Local Variables

A local variable is available only in the procedure which defines it. Local
variables do not allow a default value to be assigned at compile time.
8-20 Informix Guide to SQL: Tutorial

SPL Variables
Global Variables

A global variable is available to other procedures run by the same user
session in the same database. The values of global variables are stored in
memory. The global environment is the memory used by all the procedures
run within a given session on a given database server, such as all procedures
run by an SQL API or in a DB-Access or Relational Object Manager session.
The values of the variables are lost when the session ends.

Global variables require a default value to be assigned at compile time.

The first definition of a global variable puts the variable into the global
environment. Subsequent definitions of the same variable, in different proce-
dures, simply bind the variable to the global environment.

A global variable that you define in a stored procedure is accessible from all
other procedures executed in the same session. When multiple stored proce-
dures modify a global variable, the database server guarantees that only one
stored procedure modifies the variable at any given instant.

Dynamic Server guarantees sequential consistency for global variables. ♦

Dynamic Server with AD and XP Options does not guarantee sequential
consistency, and you should not make any assumptions about the order in
which the stored procedures are executed. ♦

Format of Variables

A variable follows the rules of an SQL identifier. For information about SQL
identifiers, see the Informix Guide to SQL: Syntax. Once you define a variable,
you can use it anywhere in the procedure as appropriate.

If you are using an SQL API, you do not have to set off the variable with a
special symbol (unlike host variables in an SQL API).

Defining Variables

To define variables, use the DEFINE statement. If you list a variable in the
argument list of a procedure, the variable is defined implicitly, and you do
not need to define it formally with the DEFINE statement. You must assign a
value, which can be null, to a variable before you can use it. For complete
information on the DEFINE statement, see the Informix Guide to SQL: Syntax.

IDS

AD/XP
Creating and Using Stored Procedures 8-21

SPL Variables
Data Types for Variables

You can define a variable as any of the data types available for columns in a
table except SERIAL. The following example shows several cases of defined
procedural variables:

DEFINE x INT;
DEFINE name CHAR(15);
DEFINE this_day DATETIME YEAR TO DAY ;

If you define a variable for TEXT or BYTE data, the variable does not actually
contain the data; instead, it serves as a pointer to the data. However, use this
procedural variable as you would use any other procedural variable. When
you define a TEXT or BYTE variable, you must use the word REFERENCES,
which emphasizes that these variables do not contain the data; they simply
reference the data. The following example shows the definition of a TEXT and
a BYTE variable:

DEFINE ttt REFERENCES TEXT;
DEFINE bbb REFERENCES BYTE;

Using Subscripts with Variables

You can use subscripts with variables that have CHAR, VARCHAR, NCHAR,
NVARCHAR, BYTE, or TEXT data types, just as you can with SQL column
names. The subscripts indicate the starting and ending character positions of
the variable. Subscripts must always be constants. You cannot use variables
as subscripts. The following example illustrates the usage:

DEFINE name CHAR(15);
LET name[4,7] = 'Ream';
SELECT fname[1,3] INTO name[1,3] FROM customer

WHERE lname = 'Ream';

The portion of the variable contents that is delimited by the two subscripts is
referred to as a substring.

Scope of Variables

A variable is valid within the statement block in which it is defined. It is valid
within statement blocks that are nested within that statement block as well,
unless it is masked by a redefinition of a variable with the same name.
8-22 Informix Guide to SQL: Tutorial

SPL Variables
In the beginning of the following procedure, the integer variables x, y, and z
are defined and initialized. The BEGIN and END statements mark a nested
statement block in which the integer variables x and q are defined as well as
the CHAR variable z. Within the nested block, the redefined variable x masks
the original variable x. After the END statement, which marks the end of the
nested block, the original value of x is accessible again.

CREATE PROCEDURE scope()
DEFINE x,y,z INT;
LET x = 5; LET y = 10;
LET z = x + y; --z is 15
BEGIN

DEFINE x, q INT; DEFINE z CHAR(5);
LET x = 100;
LET q = x + y; -- q = 110
LET z = 'silly'; -- z receives a character value

END
LET y = x; -- y is now 5
LET x = z; -- z is now 15, not 'silly'

END PROCEDURE;

Variable and Keyword Ambiguity

If you define a variable as a keyword, ambiguities can occur. The following
rules for identifiers help you avoid ambiguities for variables, procedure
names, and system function names:

■ Defined variables take the highest precedence.

■ Procedures defined as such in a DEFINE statement take precedence
over SQL functions.

■ SQL functions take precedence over procedures that exist but are not
identified as procedures in a DEFINE statement.

In some cases, you must change the name of the variable. For example, you
cannot define a variable with the name count or max, because they are the
names of aggregate functions. For a list of the keywords that can be used
ambiguously, see the Identifier segment in the Informix Guide to SQL: Syntax.
Creating and Using Stored Procedures 8-23

SPL Variables
Variables and Column Names

If you use the same identifier for a procedural variable as you use for a
column name, the database server assumes that each instance of the identifier
is a variable. Qualify the column name with the table name to use the
identifier as a column name. In the following example, the procedure
variable lname is the same as the column name. In the following SELECT
statement, customer.lname is a column name, and lname is a variable name:

CREATE PROCEDURE table_test()

DEFINE lname CHAR(15);
LET lname = 'Miller';

.

.

.
SELECT customer.lname FROM customer INTO lname

WHERE customer_num = 502;
.
.
.

Variables and SQL Functions

If you use the same identifier for a procedural variable as for an SQL function,
the database server assumes that an instance of the identifier is a variable and
disallows the use of the SQL function. You cannot use the SQL function in the
block of code in which the variable is defined. The following example shows
a block in a procedure in which the variable called user is defined. This
definition disallows the use of the USER function in the BEGIN...END block.

CREATE PROCEDURE user_test()
DEFINE name CHAR(10);
DEFINE name2 CHAR(10);
LET name = user; -- the SQL function

BEGIN
DEFINE user CHAR(15); -- disables user function
LET user = 'Miller';
LET name = user; -- assigns 'Miller' to variable name

END
.
.
.
LET name2 = user; -- SQL function again
8-24 Informix Guide to SQL: Tutorial

SPL Expressions
Procedure Names and SQL Functions

For information about ambiguities between procedure names and SQL
function names, see the Informix Guide to SQL: Syntax.

SPL Expressions
You can use any SQL expression in a stored procedure except for an aggregate
expression. The complete syntax and notes for SQL expressions are described
in the Informix Guide to SQL: Syntax.

The following examples contain SQL expressions:

var1
var1 + var2 + 5
read_address('Miller')
read_address(lastname = 'Miller')
get_duedate(acct_num) + 10 UNITS DAY
fname[1,5] || ''|| lname
'(415)' || get_phonenum(cust_name)

Assigning Values to Variables

You can assign a value to a procedure variable in the following ways:

■ Use a LET statement.

■ Use a SELECT...INTO statement.

■ Use a CALL statement with a procedure that has a RETURNING
clause.

■ Use an EXECUTE PROCEDURE...INTO statement.

Use the LET statement to assign a value to one or more variables. The
following example illustrates several forms of the LET statement:

LET a = b + a;
LET a, b = c, d;
LET a, b = (SELECT fname, lname FROM customer

WHERE customer_num = 101);
LET a, b = read_name(101);
Creating and Using Stored Procedures 8-25

Program Flow Control
Use the SELECT statement to assign a value directly from the database to a
variable. The statement in the following example accomplishes the same task
as the third LET statement in the previous example:

SELECT fname, lname into a, b FROM customer
WHERE customer_num = 101

Use the CALL or EXECUTE PROCEDURE statements to assign values returned
by a procedure to one or more procedural variables. Both statements in the
following example return the full address from the procedure read_address
into the specified procedural variables:

EXECUTE PROCEDURE read_address('Smith')
INTO p_fname, p_lname, p_add, p_city, p_state, p_zip;

CALL read_address('Smith')
RETURNING p_fname, p_lname, p_add, p_city, p_state, p_zip;

Program Flow Control
Stored Procedure Language (SPL) contains several statements that enable you
to control the flow of your stored procedure and to make decisions based on
data obtained at run time. The statements that control program flow are
described briefly in this section. For the syntax and complete descriptions of
these statements, see the Informix Guide to SQL: Syntax.

Branching
Use an IF statement to form a logic branch in a stored procedure. An IF
statement first evaluates a condition and, if the condition is true, the
statement block contained in the THEN portion of the statement is executed.
If the condition is not true, execution falls through to the next statement,
unless the IF statement includes an ELSE clause or ELIF (else if) clause. The
following example shows an IF statement:

CREATE PROCEDURE str_compare (str1 CHAR(20), str2 CHAR(20))
RETURNING INT;
DEFINE result INT;

IF str1 > str2 THEN
result = 1;

ELIF str2 > str1 THEN
8-26 Informix Guide to SQL: Tutorial

Looping
result = -1;
ELSE

result = 0;
END IF
RETURN result;

END PROCEDURE; -- str_compare

Looping
The following table shows the three statements you can use to accomplish
looping in SPL.

The following table shows the statements you can use to leave a loop.

For more information about the syntax and use of these statements, see the
Informix Guide to SQL: Syntax.

Statement Action

FOR Initiates a controlled loop. Termination is guaranteed.

FOREACH Allows you to select and manipulate more than one row
from the database. It declares and opens a cursor
implicitly

WHILE Initiates a loop. Termination is not guaranteed.

Statement Action

CONTINUE Skips the remaining statements in the present, identified
loop and starts the next iteration of that loop.

EXIT Exits the present, identified loop. Execution resumes
at the first statement after the loop.

RETURN Exits the procedure. If a return value is specified, that
value is returned upon exit.

RAISE EXCEPTION Exits the loop if the exception is not trapped (caught) in
the body of the loop.
Creating and Using Stored Procedures 8-27

Function Handling
Function Handling
You can call procedures as well as run operating-system commands from in
a procedure.

Calling Procedures Within a Procedure

Use a CALL statement or the SQL statement EXECUTE PROCEDURE to execute
a procedure from a procedure. The following example shows a call to the
read_name procedure using a CALL statement:

CREATE PROCEDURE call_test()
RETURNING CHAR(15), CHAR(15);

DEFINE fname, lname CHAR(15);
CALL read_name('Putnum') RETURNING fname, lname;

IF fname = 'Eileen' THEN RETURN 'Jessica', lname;
ELSE RETURN fname, lname;
END IF

END PROCEDURE;

Running an Operating-System Command from a Procedure

Use the SYSTEM statement to execute a system call from a procedure. The
following example shows a call to the echo command:

CREATE DBA PROCEDURE delete_customer(cnum INT)

DEFINE username CHAR(8);

DELETE FROM customer
WHERE customer_num = cnum;

IF username = 'acctclrk' THEN
SYSTEM 'echo ''Delete from customer by acctclrk'' >>

/mis/records/updates' ;
END IF
END PROCEDURE; -- delete_customer

♦

UNIX
8-28 Informix Guide to SQL: Tutorial

Passing Information to and from a Procedure
Use the SYSTEM statement to execute a system call from a procedure. In the
following example, the first SYSTEM statement causes the Windows NT
operating system to send an error message to a temporary file and to put the
message in a system log that is sorted alphabetically. The second SYSTEM
statement in the example causes the operating system to delete the
temporary file.

CREATE PROCEDURE test_proc()
.
.
.
SYSTEM 'type errormess101 > %tmp%tmpfile.txt |

sort >> %SystemRoot%systemlog.txt';
SYSTEM 'del %tmp%tmpfile.txt';
.
.
.

END PROCEDURE; --test_proc

The expressions that follow the SYSTEM statements in this example contain
two variables, %tmp% and %SystemRoot%. The Windows NT operating
system defines both of these variables. ♦

Calling a Procedure Recursively

You can call a procedure from itself. No restrictions apply on calling a
procedure recursively.

Passing Information to and from a Procedure
When you create a procedure, you specify an argument list to determine
whether it expects information to be passed to it. For each piece of infor-
mation that the procedure expects, you specify one argument and the data
type of that argument.

For example, if a procedure requires a single piece of integer information
passed to it, you can provide a procedure heading as the following example
shows:

CREATE PROCEDURE safe_delete(cnum INT)

WIN NT
Creating and Using Stored Procedures 8-29

Returning Results
Returning Results
A procedure that returns one or more values must contain two lines of code
to accomplish the transfer of information: one line to state the data types that
are going to be returned, and one line to return the values explicitly.

Specifying Return Data Types

Immediately after you specify the name and input parameters of your
procedure, you must include a RETURNING clause with the data type of each
value you expect to be returned. The following example shows the header of
a procedure (name, parameters, and RETURNING clause) that expects one
integer as input and returns one integer and one 10-byte character value:

CREATE PROCEDURE get_call(cnum INT)
RETURNING INT, CHAR(10);

Returning the Value

Once you use the RETURNING clause to indicate the type of values that are to
be returned, you can use the RETURN statement at any point in your
procedure to return the same number and data types as listed in the
RETURNING clause. The following example shows how you can return infor-
mation from the get_call procedure:

CREATE PROCEDURE get_call(cnum INT)
RETURNING INT, CHAR(10);
DEFINE ncalls INT;
DEFINE o_name CHAR(10);
.
.
.
RETURN ncalls, o_name;
.
.
.

END PROCEDURE;

If you neglect to include a RETURN statement, you do not get an error
message at compile time.
8-30 Informix Guide to SQL: Tutorial

Returning Results
Returning More Than One Set of Values from a Procedure

If your procedure executes a SELECT statement that can return more than one
row from the database, or if you return values from inside a loop, you must
use the WITH RESUME keywords in the RETURN statement. Using a
RETURN...WITH RESUME statement causes the value or values to be returned
to the calling program or procedure. After the calling program receives the
values, execution returns to the statement immediately following the
RETURN...WITH RESUME statement.

The following example shows a cursory procedure. It returns values from a
FOREACH loop and a FOR loop. This procedure is called a cursory procedure
because it contains a FOREACH loop.

CREATE PROCEDURE read_many (lastname CHAR(15))
RETURNING CHAR(15), CHAR(15), CHAR(20), CHAR(15),CHAR(2),
CHAR(5);

DEFINE p_lname,p_fname, p_city CHAR(15);
DEFINE p_add CHAR(20);
DEFINE p_state CHAR(2);
DEFINE p_zip CHAR(5);
DEFINE lcount INT ;
DEFINE i INT ;

LET lcount = 0;
TRACE ON;
CREATE VIEW myview AS SELECT * FROM customer;
TRACE 'Foreach starts';
FOREACH
SELECT fname, lname, address1, city, state, zipcode

 INTO p_fname, p_lname, p_add, p_city, p_state, p_zip
 FROM customer
 WHERE lname = lastname

RETURN p_fname, p_lname, p_add, p_city, p_state, p_zip
WITH RESUME;

LET lcount = lcount +1;
END FOREACH;

FOR i IN (1 TO 5)
 BEGIN

RETURN 'a', 'b', 'c', 'd', 'e' WITH RESUME;
 END

END FOR;
END PROCEDURE;
Creating and Using Stored Procedures 8-31

Exception Handling
When you execute this procedure, it returns the name and address for each
person with the specified last name. It also returns a sequence of letters. The
calling procedure or program must be expecting multiple returned values,
and it must use a cursor or a FOREACH statement to handle the multiple
returned values.

Exception Handling
You can use the ON EXCEPTION statement to trap any exception (or error)
that the database server returns to your procedure, or any exception raised
by your procedure. The RAISE EXCEPTION statement lets you generate an
exception within your procedure.

Trapping an Error and Recovering
The ON EXCEPTION statement provides a mechanism to trap any error.

To trap an error, enclose a group of statements in a statement block and
precede the statement block with an ON EXCEPTION statement. If an error
occurs in the block that follows the ON EXCEPTION statement, you can take
recovery action.

The following example shows an ON EXCEPTION statement within a
BEGIN...END block:

BEGIN
DEFINE c INT;
ON EXCEPTION IN

(
-206, -- table does not exist
-217 -- column does not exist
) SET err_num

IF err_num = -206 THEN
CREATE TABLE t (c INT);
INSERT INTO t VALUES (10);
-- continue after the insert statement

ELSE
ALTER TABLE t ADD(d INT);
LET c = (SELECT d FROM t);
-- continue after the select statement.

END IF
8-32 Informix Guide to SQL: Tutorial

Scope of Control of an ON EXCEPTION Statement
END EXCEPTION WITH RESUME

INSERT INTO t VALUES (10); -- will fail if t does not exist

LET c = (SELECT d FROM t); -- will fail if d does not exist
END

When an error occurs, the SPL interpreter searches for the innermost ON
EXCEPTION declaration that traps the error. The first action after trapping the
error is to reset the error. When execution of the error action code is complete,
and if the ON EXCEPTION declaration that was raised included the WITH
RESUME keywords, execution resumes automatically with the statement
following the statement that generated the error. If the ON EXCEPTION decla-
ration did not include the WITH RESUME keywords, execution exits the
current block completely.

Scope of Control of an ON EXCEPTION Statement
An ON EXCEPTION statement is valid for the statement block that follows the
ON EXCEPTION statement, all the statement blocks nested within that
following statement block, and all the statement blocks that follow the ON
EXCEPTION statement. It is not valid in the statement block that contains the
ON EXCEPTION statement.

The pseudocode in the following example shows where the exception is valid
within the procedure. That is, if error 201 occurs in any of the indicated
blocks, the action labeled a201 occurs.

CREATE PROCEDURE scope()
DEFINE i INT;
.
.
.
BEGIN -- begin statement block A
.
.
.

ON EXCEPTION IN (201)
-- do action a201
END EXCEPTION
BEGIN -- statement block aa

-- do action, a201 valid here
END
BEGIN -- statement block bb

-- do action, a201 valid here
END
WHILE i < 10
Creating and Using Stored Procedures 8-33

User-Generated Exceptions
-- do something, a201 is valid here
END WHILE

END
BEGIN -- begin statement block B

-- do something
-- a201 is NOT valid here

END
END PROCEDURE;

User-Generated Exceptions
You can generate your own error with the RAISE EXCEPTION statement, as
the following pseudocode example shows. In this example, the ON
EXCEPTION statement uses two variables, esql and eisam, to hold the error
numbers that the database server returns. The IF clause executes if an error
occurs and if the SQL error number is -206. If any other SQL error is trapped,
it is passed out of this BEGIN...END block to the last BEGIN...END block of the
previous example.

BEGIN
ON EXCEPTION SET esql, eisam -- trap all errors

IF esql = -206 THEN -- table not found
-- recover somehow

ELSE
RAISE exception esql, eisam ; -- pass the error up

END IF
END EXCEPTION

-- do something
END

Simulating SQL Errors

You can generate errors to simulate SQL errors, as the following example
shows. Here, if the user is pault, then the stored procedure acts as if that user
has no update privileges, even if the user really does have that privilege.

BEGIN
IF user = 'pault' THEN

RAISE EXCEPTION -273; -- deny Paul update privilege
END IF

END
8-34 Informix Guide to SQL: Tutorial

User-Generated Exceptions
Using RAISE EXCEPTION to Exit Nested Code

The following example shows how you can use the RAISE EXCEPTION
statement to break out of a deeply nested block. If the innermost condition is
true (if aa is negative), then the exception is raised, and execution jumps to
the code following the END of the block. In this case, execution jumps to the
TRACE statement.

BEGIN
ON EXCEPTION IN (1)
END EXCEPTION WITH RESUME -- do nothing significant (cont)

BEGIN
FOR i IN (1 TO 1000)

FOREACH select ..INTO aa FROM t
IF aa < 0 THEN

RAISE EXCEPTION 1 ; -- emergency exit
END IF

END FOREACH
END FOR
RETURN 1;

END

--do something; -- emergency exit to
 -- this statement.
TRACE 'Negative value returned';
RETURN -10;

END

Remember that a BEGIN...END block is a single statement. When an error
occurs somewhere inside a block and the trap is outside the block, when
execution resumes, the rest of the block is skipped and execution resumes at
the next statement.

Unless you set a trap for this error somewhere in the block, the error
condition is passed back to the block that contains the call and back to any
blocks that contain the block. If no ON EXCEPTION statement exists that is set
to handle the error, execution of the procedure stops, creating an error for the
program or procedure that is executing the procedure.
Creating and Using Stored Procedures 8-35

Summary
Summary
Stored procedures provide many opportunities for streamlining your
database process, including enhanced database performance, simplified
applications, and limited or monitored access to data. For syntax diagrams of
SPL statements, see the Informix Guide to SQL: Syntax.
8-36 Informix Guide to SQL: Tutorial

9
Chapter
Creating and Using Triggers
When to Use Triggers 9-3

How to Create a Trigger 9-4
Assigning a Trigger Name 9-5
Specifying the Trigger Event 9-5
Defining the Triggered Actions 9-6
A Complete CREATE TRIGGER Statement 9-7

Using Triggered Actions 9-7
Using BEFORE and AFTER Triggered Actions 9-7
Using FOR EACH ROW Triggered Actions 9-9

Using the REFERENCING Clause 9-9
Using the WHEN Condition 9-10

Using Stored Procedures as Triggered Actions 9-11
Passing Data to a Stored Procedure 9-11
Using the Stored Procedure Language 9-12
Updating Nontriggering Columns with Data

from a Stored Procedure. 9-12

Reentrant Triggers for Dynamic Server 9-13

Tracing Triggered Actions 9-13
Example of TRACE Statements in a Stored Procedure 9-14
Example of TRACE Output 9-14

Generating Error Messages 9-15
Applying a Fixed Error Message 9-15
Generating a Variable Error Message 9-17

Summary . 9-18

9-2 Infor
mix Guide to SQL: Tutorial

An SQL trigger is a mechanism that resides in the database. It is
available to any user who has permission to use it. It specifies that when a
particular action, an insert, a delete, or an update, occurs on a particular table,
the database server should automatically perform one or more additional
actions. The additional actions can be INSERT, DELETE, UPDATE, or EXECUTE
PROCEDURE statements.

This chapter describes the purpose of each component of the CREATE
TRIGGER statement, illustrates some uses for triggers, and describes the
advantages of using a stored procedure as a triggered action.

Informix Dynamic Server with Advanced Decision Support and Extended
Parallel Options does not support SQL triggers. ♦

When to Use Triggers
Because a trigger resides in the database and anyone who has the required
privilege can use it, a trigger lets you write a set of SQL statements that
multiple applications can use. It lets you avoid redundant code when
multiple programs need to perform the same database operation.

You can use triggers to perform the following actions as well as others that
are not found in this list:

■ Create an audit trail of activity in the database. For example, you can
track updates to the orders table by updating corroborating
information to an audit table.

■ Implement a business rule. For example, you can determine when an
order exceeds a customer’s credit limit and display a message to that
effect.

AD/XP
Creating and Using Triggers 9-3

How to Create a Trigger
■ Derive additional data that is not available within a table or within
the database. For example, when an update occurs to the quantity
column of the items table, you can calculate the corresponding
adjustment to the total_price column.

■ Enforce referential integrity. When you delete a customer, for
example, you can use a trigger to delete corresponding rows (that is,
rows that have the same customer number) in the orders table.

How to Create a Trigger
You use the CREATE TRIGGER statement to create a trigger. The CREATE
TRIGGER statement is a data-definition statement that associates SQL state-
ments with a precipitating action on a table. When the precipitating action
occurs, it triggers the associated SQL statements, which are stored in the
database. Figure 9-1 illustrates the relationship of the precipitating action, or
trigger event, to the triggered action.

The CREATE TRIGGER statement consists of clauses that perform the
following actions:

■ Assign a trigger name.

■ Specify the trigger event, that is, the table and the type of action that
initiate the trigger.

■ Define the SQL actions that are triggered.

Figure 9-1
Trigger Event and
Triggered Action

item_num quantity total_price
2 3 15.00
3 1 236.00
4 4 100.00
5 1 280.00

UPDATE

trigger event

EXECUTE PROCEDURE
upd_items
9-4 Informix Guide to SQL: Tutorial

Assigning a Trigger Name
An optional clause, called the REFERENCING clause is discussed in “Using
FOR EACH ROW Triggered Actions” on page 9-9.

To create a trigger, you can use DB-Access, Relational Object Manager, or one
of the SQL APIs. This section describes the CREATE TRIGGER statement as you
enter it with the interactive Query-language option in DB-Access or
Relational Object Manager. In an SQL API, you precede the statement with the
symbol or keywords that identify it as an embedded statement.

Assigning a Trigger Name
The trigger name identifies the trigger. It follows the words CREATE TRIGGER
in the statement. It can be up to 18 characters in length, beginning with a
letter and consisting of letters, the digits 0 to 9, and the underscore. In the
following example, the portion of the CREATE TRIGGER statement that is
shown assigns the name upqty to the trigger:

CREATE TRIGGER upqty -- assign trigger name

Specifying the Trigger Event
The trigger event is the type of statement that activates the trigger. When a
statement of this type is performed on the table, the database server executes
the SQL statements that make up the triggered action. The trigger event can
be an INSERT, DELETE, or UPDATE statement. When you define an UPDATE
trigger event, you can name one or more columns in the table to activate the
trigger. If you do not name any columns, then an update of any column in the
table activates the trigger. You can create only one INSERT and one DELETE
trigger per table, but you can create multiple UPDATE triggers as long as the
triggering columns are mutually exclusive.

In the following excerpt of a CREATE TRIGGER statement, the trigger event is
defined as an update of the quantity column in the items table:

CREATE TRIGGER upqty
UPDATE OF quantity ON items-- an UPDATE trigger event
Creating and Using Triggers 9-5

Defining the Triggered Actions
This portion of the statement identifies the table on which you create the
trigger. If the trigger event is an insert or delete, only the type of statement
and the table name are required, as the following example shows:

CREATE TRIGGER ins_qty
INSERT ON items -- an INSERT trigger event

Defining the Triggered Actions
The triggered actions are the SQL statements that are performed when the
trigger event occurs. The triggered actions can consist of INSERT, DELETE,
UPDATE, and EXECUTE PROCEDURE statements. In addition to specifying
what actions are to be performed, however, you must also specify when they
are to be performed in relation to the triggering statement. You have the
following choices:

■ Before the triggering statement executes

■ After the triggering statement executes

■ For each row that is affected by the triggering statement

A single trigger can define actions for each of these times.

To define a triggered action, you specify when it occurs and then provide the
SQL statement or statements to execute. You specify when the action is to
occur with the keywords BEFORE, AFTER, or FOR EACH ROW. The triggered
actions follow, enclosed in parentheses. The following triggered-action
definition specifies that the stored procedure upd_items_p1 is to be executed
before the triggering statement:

BEFORE(EXECUTE PROCEDURE upd_items_p1)-- a BEFORE action
9-6 Informix Guide to SQL: Tutorial

A Complete CREATE TRIGGER Statement
A Complete CREATE TRIGGER Statement
To define a complete CREATE TRIGGER statement, you combine the
trigger-name clause, the trigger-event clause, and the triggered-action clause.
The following CREATE TRIGGER statement is the result of combining the
components of the statement from the preceding examples. This trigger
executes the stored procedure upd_items_p1 whenever the quantity column
of the items table is updated.

CREATE TRIGGER upqty
UPDATE OF quantity ON items
BEFORE(EXECUTE PROCEDURE upd_items_p1)

If a database object in the trigger definition, such as the stored procedure
upd_items_p1 in this example, does not exist when the database server
processes the CREATE TRIGGER statement, it returns an error.

Using Triggered Actions
To use triggers effectively, you need to understand the relationship between
the triggering statement and the resulting triggered actions. You define this
relationship when you specify the time that the triggered action occurs; that
is, BEFORE, AFTER, or FOR EACH ROW.

Using BEFORE and AFTER Triggered Actions
Triggered actions that occur before or after the trigger event execute only
once. A BEFORE triggered action executes before the triggering statement, that
is, before the occurrence of the trigger event. An AFTER triggered action
executes after the action of the triggering statement is complete. BEFORE and
AFTER triggered actions execute even if the triggering statement does not
process any rows.
Creating and Using Triggers 9-7

Using BEFORE and AFTER Triggered Actions
Among other uses, you can use BEFORE and AFTER triggered actions to
determine the effect of the triggering statement. For example, before you
update the quantity column in the items table, you could call the stored
procedure upd_items_p1 to calculate the total quantity on order for all items
in the table, as the following example shows. The procedure stores the total
in a global variable called old_qty.

CREATE PROCEDURE upd_items_p1()
DEFINE GLOBAL old_qty INT DEFAULT 0;
LET old_qty = (SELECT SUM(quantity) FROM items);

END PROCEDURE;

After the triggering update completes, you can calculate the total again to see
how much it has changed. The following stored procedure, upd_items_p2,
calculates the total of quantity again and stores the result in the local variable
new_qty. Then it compares new_qty to the global variable old_qty to see if
the total quantity for all orders has increased by more than 50 percent. If so,
the procedure uses the RAISE EXCEPTION statement to simulate an SQL error.

CREATE PROCEDURE upd_items_p2()
DEFINE GLOBAL old_qty INT DEFAULT 0;
DEFINE new_qty INT;
LET new_qty = (SELECT SUM(quantity) FROM items);
IF new_qty > old_qty * 1.50 THEN

RAISE EXCEPTION -746, 0, 'Not allowed - rule violation';
END IF

END PROCEDURE;

The following trigger calls upd_items_p1 and upd_items_p2 to prevent an
extraordinary update on the quantity column of the items table:

CREATE TRIGGER up_items
UPDATE OF quantity ON items
BEFORE(EXECUTE PROCEDURE upd_items_p1())
AFTER(EXECUTE PROCEDURE upd_items_p2());

If an update raises the total quantity on order for all items by more than
50 percent, the RAISE EXCEPTION statement in upd_items_p2 terminates the
trigger with an error. When a trigger fails in the database server and the
database has logging, the database server rolls back the changes that both the
triggering statement and the triggered actions make. For more information
on what happens when a trigger fails, see the CREATE TRIGGER statement in
the Informix Guide to SQL: Syntax.
9-8 Informix Guide to SQL: Tutorial

Using FOR EACH ROW Triggered Actions
Using FOR EACH ROW Triggered Actions
A FOR EACH ROW triggered action executes once for each row that the
triggering statement affects. For example, if the triggering statement has the
following syntax, a FOR EACH ROW triggered action executes once for each
row in the items table in which the manu_code column has a value of ‘KAR’:

UPDATE items SET quantity = quantity * 2 WHERE manu_code = 'KAR'

If the triggering statement does not process any rows, a FOR EACH ROW
triggered action does not execute.

Using the REFERENCING Clause

When you create a FOR EACH ROW triggered action, you must usually
indicate in the triggered action statements whether you are referring to the
value of a column before or after the effect of the triggering statement. For
example, imagine that you want to track updates to the quantity column of
the items table. To do this, you create the following table to record the
activity:

CREATE TABLE log_record
(item_num SMALLINT,
ord_num INTEGER,
username CHARACTER(8),
update_time DATETIME YEAR TO MINUTE,
old_qty SMALLINT,
new_qty SMALLINT);

To supply values for the old_qty and new_qty columns in this table, you
must be able to refer to the old and new values of quantity in the items table;
that is, the values before and after the effect of the triggering statement. The
REFERENCING clause enables you to do this.

The REFERENCING clause lets you create two prefixes that you can combine
with a column name, one to reference the old value of the column and one to
reference its new value. These prefixes are called correlation names. You can
create one or both correlation names, depending on your requirements. You
indicate which one you are creating with the keywords OLD and NEW. The
following REFERENCING clause creates the correlation names pre_upd and
post_upd to refer to the old and new values in a row:

REFERENCING OLD AS pre_upd NEW AS post_upd
Creating and Using Triggers 9-9

Using FOR EACH ROW Triggered Actions
The following triggered action creates a row in log_record when quantity is
updated in a row of the items table. The INSERT statement refers to the old
values of the item_num and order_num columns and to both the old and
new values of the quantity column.

FOR EACH ROW(INSERT INTO log_record
VALUES (pre_upd.item_num, pre_upd.order_num, USER, CURRENT,

pre_upd.quantity, post_upd.quantity));

The correlation names defined in the REFERENCING clause apply to all rows
affected by the triggering statement.

Important: If you refer to a column name in the triggering table and do not use a
correlation name, the database server makes no special effort to search for the column
in the definition of the triggering table. You must always use a correlation name with
a column name in SQL statements in a FOR EACH ROW triggered action, unless the
statement is valid independent of the triggered action. For more information, see the
CREATE TRIGGER statement in the Informix Guide to SQL: Syntax.

Using the WHEN Condition

As an option, you can precede a triggered action with a WHEN clause to make
the action dependent on the outcome of a test. The WHEN clause consists of
the keyword WHEN followed by the condition statement given in paren-
theses. In the CREATE TRIGGER statement, the WHEN clause follows the
keywords BEFORE, AFTER, or FOR EACH ROW and precedes the triggered-
action list.

When a WHEN condition is present, if it evaluates to true, the triggered
actions execute in the order in which they appear. If the WHEN condition
evaluates to false or unknown, the actions in the triggered-action list do not
execute. If the trigger specifies FOR EACH ROW, the condition is evaluated for
each row also.

In the following trigger example, the triggered action executes only if the
condition in the WHEN clause is true; that is, if the post-update unit price is
greater than two times the pre-update unit price:

CREATE TRIGGER up_price
UPDATE OF unit_price ON stock
REFERENCING OLD AS pre NEW AS post
FOR EACH ROW WHEN(post.unit_price > pre.unit_price * 2)

(INSERT INTO warn_tab VALUES(pre.stock_num, pre.manu_code,
pre.unit_price, post.unit_price, CURRENT))
9-10 Informix Guide to SQL: Tutorial

Using Stored Procedures as Triggered Actions
For more information on the WHEN condition, see the CREATE TRIGGER
statement in the Informix Guide to SQL: Syntax

Using Stored Procedures as Triggered Actions
Probably the most powerful feature of triggers is the ability to call a stored
procedure as a triggered action. The EXECUTE PROCEDURE statement, which
calls a stored procedure, lets you pass data from the triggering table to the
stored procedure and also to update the triggering table with data returned
by the stored procedure. SPL also lets you define variables, assign data to
them, make comparisons, and use procedural statements to accomplish
complex tasks within a triggered action.

Passing Data to a Stored Procedure

You can pass data to a stored procedure in the argument list of the EXECUTE
PROCEDURE statement. The EXECUTE PROCEDURE statement in the
following trigger example passes values from the quantity and total_price
columns of the items table to the stored procedure calc_totpr:

CREATE TRIGGER upd_totpr
UPDATE OF quantity ON items
REFERENCING OLD AS pre_upd NEW AS post_upd
FOR EACH ROW(EXECUTE PROCEDURE calc_totpr(pre_upd.quantity,

post_upd.quantity, pre_upd.total_price) INTO total_price)

Passing data to a stored procedure lets you use it in the operations that the
procedure performs.
Creating and Using Triggers 9-11

Using Stored Procedures as Triggered Actions
Using the Stored Procedure Language

The EXECUTE PROCEDURE statement in the preceding trigger calls the stored
procedure that the following example shows. The procedure uses SPL to
calculate the change that needs to be made to the total_price column when
quantity is updated in the items table. The procedure receives both the old
and new values of quantity and the old value of total_price. It divides the old
total price by the old quantity to derive the unit price. It then multiplies the
unit price by the new quantity to obtain the new total price.

CREATE PROCEDURE calc_totpr(old_qty SMALLINT, new_qty SMALLINT,
total MONEY(8)) RETURNING MONEY(8);
DEFINE u_price LIKE items.total_price;
DEFINE n_total LIKE items.total_price;
LET u_price = total / old_qty;
LET n_total = new_qty * u_price;
RETURN n_total;

END PROCEDURE;

In this example, SPL lets the trigger derive data that is not directly available
from the triggering table.

Updating Nontriggering Columns with Data from a Stored Procedure

Within a triggered action, the INTO clause of the EXECUTE PROCEDURE
statement lets you update nontriggering columns in the triggering table. The
EXECUTE PROCEDURE statement in the following example calls the
calc_totpr stored procedure that contains an INTO clause, which references
the column total_price:

FOR EACH ROW(EXECUTE PROCEDURE calc_totpr(pre_upd.quantity,
post_upd.quantity, pre_upd.total_price) INTO total_price);

The value that is updated into total_price is returned by the RETURN
statement at the conclusion of the stored procedure. The total_price column
is updated for each row that the triggering statement affects.
9-12 Informix Guide to SQL: Tutorial

Reentrant Triggers for Dynamic Server
Reentrant Triggers for Dynamic Server
Dynamic Server supports reentrant triggers. A reentrant trigger refers to a case
in which the triggered action can reference the triggering table. In other
words, both the triggering event and the triggered action can operate on the
same table. For example, suppose the following UPDATE statement repre-
sents the triggering event:

UPDATE tab1 SET (col_a, col_b) = (col_a + 1, col_b + 1)

The following triggered action is legal because column col_c is not a column
that the triggering event has updated:

UPDATE tab1 SET (col_c) = (col_c + 3)

In the preceding example, a triggered action on col_a or col_b would be
illegal because a triggered action cannot be an UPDATE statement that refer-
ences a column that was updated by the triggering event.

For a list of the rules that describe all situations in which a trigger can and
cannot be reentrant, see the CREATE TRIGGER statement in the Informix Guide
to SQL: Syntax.

Tracing Triggered Actions
If a triggered action does not behave as you expect, place it in a stored
procedure, and use the SPL TRACE statement to monitor its operation. Before
you start the trace, you must direct the output to a file with the SET DEBUG
FILE TO statement.

IDS
Creating and Using Triggers 9-13

Example of TRACE Statements in a Stored Procedure
Example of TRACE Statements in a Stored Procedure
The following example shows TRACE statements that you add to the stored
procedure items_pct. The SET DEBUG FILE TO statement directs the trace
output to the file that the pathname specifies. The TRACE ON statement
begins tracing the statements and variables within the procedure.

CREATE PROCEDURE items_pct(mac CHAR(3))
DEFINE tp MONEY;
DEFINE mc_tot MONEY;
DEFINE pct DECIMAL;
SET DEBUG FILE TO 'pathname'; -- modify this pathname according to the

 -- conventions that your operating system requires

TRACE 'begin trace';
TRACE ON;
LET tp = (SELECT SUM(total_price) FROM items);
LET mc_tot = (SELECT SUM(total_price) FROM items

WHERE manu_code = mac);
LET pct = mc_tot / tp;
IF pct > .10 THEN

RAISE EXCEPTION -745;
END IF
TRACE OFF;
END PROCEDURE;

CREATE TRIGGER items_ins
INSERT ON items
REFERENCING NEW AS post_ins
FOR EACH ROW(EXECUTE PROCEDURE items_pct (post_ins.manu_code));

Example of TRACE Output
The following example shows sample trace output from the items_pct
procedure as it appears in the file that was named in the SET DEBUG FILE TO
statement. The output reveals the values of procedure variables, procedure
arguments, return values, and error codes.

trace expression :begin trace
trace on
expression:
 (select (sum total_price)
 from items)
evaluates to $18280.77 ;
let tp = $18280.77
expression:
 (select (sum total_price)
 from items
 where (= manu_code, mac))
evaluates to $3008.00 ;
let mc_tot = $3008.00
expression:(/ mc_tot, tp)
9-14 Informix Guide to SQL: Tutorial

Generating Error Messages
evaluates to 0.16
let pct = 0.16
expression:(> pct, 0.1)
evaluates to 1
expression:(- 745)
evaluates to -745
raise exception :-745, 0, ''
exception : looking for handler
SQL error = -745 ISAM error = 0 error string = = ''
exception : no appropriate handler

For more information about how to use the TRACE statement to diagnose
logic errors in stored procedures, see “Creating and Using Stored
Procedures.”

Generating Error Messages
When a trigger fails because of an SQL statement, the database server returns
the SQL error number that applies to the specific cause of the failure.

When the triggered action is a stored procedure, you can generate error
messages for other error conditions with one of two reserved error numbers.
The first one is error number -745, which has a generalized and fixed error
message. The second one is error number -746, which allows you to supply
the message text, up to a maximum of 71 characters.

Applying a Fixed Error Message
You can apply error number -745 to any trigger failure that is not an SQL error.
The following fixed message is for this error:

-745 Trigger execution has failed.
Creating and Using Triggers 9-15

Applying a Fixed Error Message
You can apply this message with the RAISE EXCEPTION statement in SPL. The
following example generates error -745 if new_qty is greater than
old_qty multiplied by 1.50:

CREATE PROCEDURE upd_items_p2()
DEFINE GLOBAL old_qty INT DEFAULT 0;
DEFINE new_qty INT;
LET new_qty = (SELECT SUM(quantity) FROM items);
IF new_qty > old_qty * 1.50 THEN

RAISE EXCEPTION -745;
END IF

END PROCEDURE

If you are using DB-Access, the text of the message for error -745 displays on
the bottom of the screen, as seen in Figure 9-2.

If you trigger the erring procedure through an SQL statement in your SQL API,
the database server sets the SQL error status variable to -745 and returns it to
your program. To display the text of the message, follow the procedure that
your Informix application development tool provides for retrieving the text
of an SQL error message.

Figure 9-2
Error Message -745 with Fixed Message

Press CTRL-W for Help
SQL: New Run Modify Use-editor Output Choose Save Info Drop Exit
Modify the current SQL statements using the SQL editor.

----------------------- stores8@myserver --------- Press CTRL-W for Help ----

INSERT INTO items VALUES(2, 1001, 2, 'HRO', 1, 126.00);

745: Trigger execution has failed.
9-16 Informix Guide to SQL: Tutorial

Generating a Variable Error Message
Generating a Variable Error Message
Error number -746 allows you to provide the text of the error message. Like
the preceding example, the following one also generates an error if new_qty
is greater than old_qty multiplied by 1.50. However, in this case the error
number is -746, and the message text Too many items for Mfr. is supplied
as the third argument in the RAISE EXCEPTION statement. For more infor-
mation on the syntax and use of this statement, see the RAISE EXCEPTION
statement in “Creating and Using Stored Procedures.”

CREATE PROCEDURE upd_items_p2()
DEFINE GLOBAL old_qty INT DEFAULT 0;
DEFINE new_qty INT;
LET new_qty = (SELECT SUM(quantity) FROM items);
IF new_qty > old_qty * 1.50 THEN

RAISE EXCEPTION -746, 0, 'Too many items for Mfr.';
END IF

END PROCEDURE;

If you use DB-Access to submit the triggering statement, and if new_qty is
greater than old_qty, you will get the result that Figure 9-3 shows.

Figure 9-3
Error Number -746 with User-Specified Message Text

Press CTRL-W for Help
SQL: New Run Modify Use-editor Output Choose Save Info Drop Exit
Modify the current SQL statements using the SQL editor.

---------------------- store7@myserver --------- Press CTRL-W for Help -----

INSERT INTO items VALUES(2, 1001, 2, 'HRO', 1, 126.00);

746: Too many items for Mfr.
Creating and Using Triggers 9-17

Summary
If you invoke the trigger through an SQL statement in an SQL API, the
database server sets sqlcode to -746 and returns the message text in the
sqlerrm field of the SQL communications area (SQLCA). For complete infor-
mation about how to use the SQLCA, see your SQL API manual.

Summary
To introduce triggers, this chapter discusses the following topics:

■ The purpose of each component of the CREATE TRIGGER statement

■ How to create BEFORE and AFTER triggered actions and how to use
them to determine the impact of the triggering statement

■ How to create a FOR EACH ROW triggered action and how to use the
REFERENCING clause to refer to the values of columns both before
and after the action of the triggering statement

■ The advantages of using stored procedures as triggered actions

■ How to trace triggered actions if they behave unexpectedly

■ How to generate two types of error messages within a triggered
action
9-18 Informix Guide to SQL: Tutorial

Index

Index
A
Access modes, description of 7-18
Accessing tables 2-101
Active set

definition of 2-28
of a cursor 5-24

Aggregate function
and GROUP BY clause 3-5
AVG 2-59
COUNT 2-58
description of 2-57, 2-68
in ESQL 5-14
in SPL expressions 8-25
in subquery 3-33
MAX 2-60
mentioned Intro-6
MIN 2-60
null value signalled 5-12
RANGE 2-60
standard deviation 2-61
STDEV 2-61
SUM 2-60
VARIANCE 2-62

Alias
for table name 2-96
to assign column names in

temporary table 3-12
with self-join 3-11

ALL keyword, beginning a
subquery 3-31

ALTER INDEX statement, locking
table 7-8

AND logical operator 2-36
ANSI 1-16

ANSI compliance
icon Intro-11
level Intro-15

ANSI-compliant database
FOR UPDATE not required

in 6-16
signalled in SQLWARN 5-11

ANY keyword, beginning a
subquery 3-32

Application
common features 1-17
description of 1-18
design of order-entry 4-29
handling errors 5-17

Archiving
database server methods 4-33
description of 4-33
transaction log 4-33

Arithmetic operator, in
expression 2-49

Ascending order in SELECT 2-14
Asterisk, wildcard character in

SELECT 2-12
AVG function, as aggregate

function 2-59

B
BEGIN WORK statement 4-32
BETWEEN keyword

testing for equality in WHERE
clause 2-29

using to specify a range of
rows 2-32

Boolean expression, and logical
operator 2-36

BYTE data type
restrictions

with GROUP BY 3-6
with LIKE or MATCHES 2-37
with relational expression 2-29

using LENGTH function on 2-80
BYTE value, displaying 2-11

C
CALL statement

assigning values with 8-25
executing a procedure 8-12

Cartesian product
basis of any join 2-90
description of 2-88

Cascading deletes
definition of 4-24
locking associated with 4-24
logging 4-24
restriction 4-26

Case conversion
with INITCAP function 2-73
with LOWER function 2-72
with UPPER function 2-72

CASE expression
description of 2-54
mentioned Intro-7
using 2-55

CHAR data type
converting to a DATE value 2-68
converting to a DATETIME

value 2-70
in relational expressions 2-29
subscripting 2-44
substrings of 2-27
truncation signalled 5-12

Character string
converting to a DATE value 2-68
converting to a DATETIME

value 2-70
Check constraint, definition of 4-22
CLOSE DATABASE statement,

effect on database locks 7-8
Codd, E. F. 1-11
Collation order and GLS 2-25

Column
definition of 2-5
description of 1-13
in relational model 1-13
label on 3-44

Column number, using 2-24
Comment icons Intro-9
COMMIT WORK statement

closing cursors 7-21
releasing locks 7-11, 7-21
setting SQLCODE 6-5

Committed Read, isolation level
(Informix) 7-14

Comparison condition, description
of 2-29

Compliance
icons Intro-11
with industry standards Intro-15

Compound query 3-40
Concurrency

access modes 7-18
ANSI Read Committed

isolation 7-14
ANSI Read Uncommitted

isolation 7-14
ANSI Repeatable Read

isolation 7-17
ANSI Serializable isolation 7-17
database lock 7-8
deadlock 7-20
description of 4-34, 7-3
effect on performance 7-3
Informix Cursor Stability

isolation 7-15
Informix Dirty Read

isolation 7-14
Informix Read Committed

isolation 7-14
Informix Repeatable Read

isolation 7-17
isolation level 7-12
kinds of locks 7-7
lock duration 7-11
lock scope 7-7
table lock 7-8

Configuration parameter,
ISOLATION_LOCKS 7-15

Constraint
disabled 4-27
enabled 4-27
entity integrity 4-21

CONTINUE statement, exiting a
loop 8-27

Conversion function, description
of 2-68

Coordinated deletes 6-6
Correlated subquery

definition of 3-30
restriction with cascading

deletes 4-26
COUNT function

and GROUP BY 3-6
as aggregate function 2-58
count rows to delete 4-5
use in a subquery 4-6
with DISTINCT 2-59

CREATE DATABASE statement
setting shared lock 7-8
SQLWARN after 5-11

CREATE INDEX statement, locking
table 7-8

CREATE PROCEDURE FROM
statement, in embedded
languages 8-7

CREATE PROCEDURE statement
inside CREATE PROCEDURE

FROM 8-7
using 8-6

CURRENT function, comparing
column values 2-63

Cursor
active set of 5-24
closing 7-21
declaring 5-20
defined 5-24
definition of 5-20
for insert 6-9
for update 6-15, 7-11
hold 7-21
opening 5-21, 5-24
retrieving values with

FETCH 5-22
scroll 5-23
sequence of program

operations 5-20
2 Informix Guide to SQL: Tutorial

sequential 5-23, 5-25
WITH HOLD 7-21

Cursor Stability isolation level
(Informix) Intro-7, 7-15

Cyclic query 4-26

D
Data definition statements 5-34
Data integrity 4-28 to 4-33
Data loading 4-34
Data model, description of 1-4
Data replication 4-35
Data type

automatic conversions 5-15
conversion 4-9
in SPL variables 8-22

Database
ANSI-compliant 1-17
application 1-17
concurrent use 1-9
definition of 1-12
GLS 1-17
management of 1-10
relational, definition of 1-11
server 1-9, 1-17
server, definition of 1-18
table names 2-101

Database lock 7-8
Database object

constraints as a 4-26
index as a 4-26
object modes 4-26
trigger as a 4-26
violation detection 4-26

Database server
archiving 4-33
definition of 1-18
identifying host computer

name 2-83
identifying version number 2-83
locking tables 7-8
signalled in SQLWARN 5-11

DATABASE statement
exclusive mode 7-8
locking 7-8
SQLWARN after 5-11

Database-level privilege 4-17
DATE data type

converting to a character
string 2-69

functions returning 2-63
in ORDER BY sequence 2-14
in relational expressions 2-29
international date formats 1-17

DATE function, as conversion
function 2-68

DATETIME data type
converting to a character

string 2-69
displaying format 2-67
functions returning 2-63
in ORDER BY sequence 2-14
in relational expressions 2-29

DAY function, as time
function 2-64

DB-Access, creating database
with 5-34

DBA-privileged procedure 8-17
DBDATE environment variable 4-9
DBINFO function, in SELECT

statement 2-82
DBSERVERNAME function, in

SELECT statement 2-81, 3-19
dbspace, name returned by

DBINFO function 2-82
Deadlock detection 7-20
DECIMAL data type, signalled in

SQLWARN 5-11
DECLARE statement

description of 5-20
FOR INSERT clause 6-9
FOR UPDATE 6-15
SCROLL keyword 5-24
WITH HOLD clause 7-23

DECODE function 2-83
Default locale Intro-4
Default value, in column 4-22
DEFINE statement, in stored

procedures 8-21
DELETE statement

all rows of table 4-4
coordinated deletes 6-6
count of rows 6-4
description of 4-4

embedded 5-6, 6-3 to 6-8
number of rows 5-10
preparing 5-31
transactions with 6-5
using subquery 4-6
WHERE clause restricted 4-7
with cursor 6-7

Demonstration database Intro-5
Descending order in SELECT 2-14
Diagnostics table, using with

filtering mode 4-27
Difference set operation 3-50
Dirty Read isolation level

(Informix) 7-14
Disabled object mode, definition

of 4-26
Display label

in ORDER BY clause 2-56
with SELECT 2-52

DISTINCT keyword
relation to GROUP BY 3-4
using in SELECT 2-20
using with COUNT function 2-59

Distributed deadlock 7-21
DOCUMENT keyword, use in

stored procedures 8-8
Documentation conventions

icon Intro-9
sample-code Intro-11
typographical Intro-8

Documentation notes, program
item Intro-14

Documentation, types of
documentation notes Intro-14
error message files Intro-13
machine notes Intro-14
on-line manuals Intro-12
printed manuals Intro-13
related reading Intro-15
release notes Intro-14

Domain of column 4-21
Dominant table 3-20
DROP INDEX statement, locking

table 7-8
Duplicate values, finding 3-15
Dynamic SQL

description of 5-5, 5-29
freeing prepared statements 5-33
Index 3

E
Embedded SQL

definition of 5-4
languages available 5-4

Enabled object mode, definition
of 4-26

End of data
signal in SQLCODE 5-9, 5-17
signal only for SELECT 6-14
when opening cursor 5-21

Entity, definition of 4-21
en_us.8859-1 locale Intro-4
Equals (=) relational operator 2-30,

2-90
Equi-join 2-90
Error checking

exception handling 8-32
in stored procedures 8-32
simulating errors 8-34

Error message files Intro-13
Error message variable 5-13
Error messages

for trigger failure 9-15
generating in a trigger 9-15
retrieving trigger text in a

program 9-16, 9-18
Errors

after DELETE 6-4
at compile time 8-8
codes for 5-10
dealing with 5-17
detected on opening cursor 5-21
during updates 4-28
in stored procedure syntax 8-9
inserting with a cursor 6-11
ISAM error code 5-10

ESCAPE keyword, using in
WHERE clause 2-44

ESQL
cursor use 5-20 to 5-28
DELETE statement in 6-3
delimiting host variables 5-7
dynamic embedding 5-5, 5-29
error handling 5-17
fetching rows from cursor 5-22
host variable 5-6, 5-8
indicator variable 5-16
INSERT in 6-9

overview 5-3 to 5-37, 6-3 to 6-18
preprocessor 5-4
scroll cursor 5-23
selecting single rows 5-14
SQL Communications Area

(SQLCA) 5-8
SQLCODE 5-9
SQLERRD fields 5-10
static embedding 5-5
UPDATE in 6-15

Exclusive lock 7-7
EXECUTE IMMEDIATE statement,

description of 5-33
EXECUTE PROCEDURE statement

assigning values with 8-25
using 8-12

EXECUTE statement, description
of 5-31

EXISTS keyword, in a WHERE
clause 3-31

EXIT statement, exiting a loop 8-27
Expression

CASE 2-54
date-oriented 2-63
description of 2-49
display label for 2-52
SPL 8-25

EXTEND function
using in expression 2-67
with DATE, DATETIME and

INTERVAL 2-63
Extension, to SQL, symbol

for Intro-11
External tables Intro-7, 4-34

F
Feature icons Intro-10
Features, product Intro-5
FETCH statement

ABSOLUTE keyword 5-24
description of 5-22
sequential 5-23
with sequential cursor 5-25

File, compared to database 1-4
Filtering object mode, definition

of 4-26
finderr utility Intro-13

FIRST clause
description of 2-46
in a union query 2-48
using 2-46
with ORDER BY clause 2-47

FLUSH statement
count of rows inserted 6-11
writing rows to buffer 6-10

FOR statement, looping in a stored
procedure 8-27

FOR UPDATE keywords
conflicts with ORDER BY 6-8
not needed in ANSI-compliant

database 6-16
specific columns 6-16

FOREACH statement, looping in a
stored procedure 8-27

Foreign key 4-22
Fragmented table, using primary

keys 3-15
FREE statement, freeing prepared

statements 5-33
FROM keyword, alias names 2-96
Function

aggregate 2-57
applying to expressions 2-63
conversion 2-68
DATE 2-68
date-oriented 2-63
DBINFO 2-82
DECODE 2-83
in a stored procedure 8-28
in SELECT statements 2-57
INITCAP 2-73
LOWER 2-72
LPAD 2-77
name confusion in SPL 8-24
NVL 2-85
REPLACE 2-74
RPAD 2-78
string manipulation 2-71
SUBSTR 2-76
SUBSTRING 2-75
time 2-63
TO_CHAR 2-69
TO_DATE 2-70
UPPER 2-72
4 Informix Guide to SQL: Tutorial

G
Global Language Support (GLS)

and MATCHES keyword 2-42
and ORDER BY keywords 2-25,

2-42
database, description of 1-17
default locale 2-25
locales Intro-4
mentioned Intro-6
sort order 2-25

Global variable in SPL 8-21
GLS. See Global Language Support.
GRANT statement, in embedded

SQL 5-34 to 5-36
Greater than or equal to (>=)

relational operator 2-32
Greater than (>) relational

operator 2-31
GROUP BY keywords

column number with 3-7
description of 3-4

H
HAVING keyword 3-8
Header, of a procedure 8-30
HEX function, using in

expression 2-82
Hold cursor, definition of 7-21
Host variable

delimiter for 5-7
description of 5-6
fetching data into 5-22
in DELETE statement 6-4
in INSERT statement 6-9
in UPDATE statement 6-15
in WHERE clause 5-15
INTO keyword sets 5-14
null indicator 5-16
restrictions in prepared

statement 5-30
truncation signalled 5-12
with EXECUTE statement 5-31

Hostname of computer, returned by
DBINFO function 2-83

I
Icons

comment Intro-9
compliance Intro-11
feature Intro-10
platform Intro-10
product Intro-10

IF statement, branching 8-26
IN keyword, using in WHERE

clause 2-29
IN relational operator 3-31
Index

disabled mode 4-27
enabled mode 4-27
filtering mode 4-27
table locks 7-8

Indicator variable, definition
of 5-16

Industry standards, compliance
with Intro-15

INFORMIXDIR/bin
directory Intro-5

INITCAP function, as string
manipulation function 2-73

Insert cursor
definition of 6-9
using 6-12

INSERT statement
and end of data 6-14
constant data with 6-12
count of rows inserted 6-11
duplicate values in 4-8
embedded 6-9 to 6-14
inserting

multiple rows 4-10
rows 4-7
single rows 4-7

null values in 4-8
number of rows 5-10
SELECT statement in 4-10
VALUES clause 4-7

Inserting rows of constant
data 6-12

Interrupted modifications 4-28
Intersection set operation 3-48
INTERVAL data type, in relational

expressions 2-29

INTO keyword
choice of location 5-23
in FETCH statement 5-23
mismatch signalled in

SQLWARN 5-12
restrictions in INSERT 4-11
restrictions in prepared

statement 5-30
retrieving multiple rows 5-20
retrieving single rows 5-14

INTO TEMP keywords, description
of 2-100

IS NOT NULL keywords 2-35
IS NULL keywords 2-35
ISAM error code 5-10
ISO 8859-1 code set Intro-4, 2-25
Isolation level

ANSI Read Committed 7-14
ANSI Read Uncommitted 7-14
ANSI Repeatable Read 7-17
ANSI Serializable 7-17
description of 7-12
Informix Committed Read 7-14
Informix Cursor Stability 7-15
Informix Dirty Read 7-14
Informix Repeatable Read 7-17
setting 7-12

ISOLATION_LOCKS configuration
parameter, specifying number
of rows to lock 7-15

J
Join

associative 2-94
composite 2-88
condition 2-88
creating 2-90
definition of 2-8, 2-88
dominant table 3-20
equi-join 2-90
in an UPDATE statement 4-17
multiple-table join 2-95
natural 2-93
nested simple 3-24
outer, definition of 3-20
outer, types of 3-20
Index 5

self-join 3-11
simple 2-88
subservient table 3-20

K
Key lock 7-10
Keywords

in a subquery 3-31
in a WHERE clause 2-29

L
Label 2-52, 3-44
Last SERIAL value, returned by

DBINFO function 2-82
LENGTH function

on TEXT or BYTE strings 2-80
on VARCHAR 2-80
use in expression 2-79

Less than or equal to (<=) relational
operator 2-32

Less than (<) relational
operator 2-31

LET statement
assigning values 8-25
executing a procedure 8-12

LIKE keyword
description of 2-37
using in WHERE clause 2-29

Local variables in SPL 8-20
Locale Intro-4, 1-17
Lock mode, TABLE 7-9
LOCK TABLE statement, locking a

table explicitly 7-9
Locking

and concurrency 4-34
and integrity 7-3
deadlock 7-20
description of 7-6
granularity 7-7
lock duration 7-11
lock mode 7-19

not wait 7-19
wait 7-19

locks released at end of
transaction 7-21

scope of lock 7-7
setting lock mode 7-19
specifying number of rows to

lock 7-15
types of locks

database lock 7-8
exclusive lock 7-7
key lock 7-10
page lock 7-10
promotable lock 7-7, 7-11
row lock 7-10
shared lock 7-7
table lock 7-8

with
DELETE 6-4
update cursor 7-11

Logical log
and backups 4-33
description of 4-30

Logical operator
AND 2-36
NOT 2-36
OR 2-36

Logslice, description of 4-31
Loop

creating and exiting in SPL 8-27
exiting with RAISE

exception 8-35
LOWER function, as string

manipulation function 2-72
LPAD function, as string

manipulation function 2-77

M
Machine notes Intro-14
MATCHES keyword

using GLS 2-42
using in WHERE clause 2-29

MATCHES relational operator
how locale affects 2-42
in WHERE clause 2-37

MAX function, as aggregate
function 2-60

MDY function, as time
function 2-63

Message file
error messages Intro-13

MIN function, as aggregate
function 2-60

MODE ANSI keywords, specifying
transactions 4-32

MONEY data type
in INSERT statement 4-8
international money formats 1-17

MONTH function, as time
function 2-63

Multiple-table join 2-95
Multithreaded application,

definition of 5-5

N
Naming convention, tables 2-101
Natural join 2-93
NCHAR data type, querying

on 2-11
Nested ordering, in SELECT 2-15
Nonlogging tables Intro-7, 4-31
Not equal (!=) relational

operator 2-31
NOT logical operator 2-36
NOT relational operator 2-32
Null value

detecting in ESQL 5-16
in INSERT statement 4-8
testing for 2-35
with logical operator 2-36

NVARCHAR data type, querying
on 2-11

NVL function 2-85

O
Object mode, description of 4-26
ON EXCEPTION statement

scope of control 8-33
trapping errors 8-32
user-generated errors 8-34

On-line manuals Intro-12
onload utility 4-34
onunload utility 4-34
OPEN statement

activating a cursor 5-21
opening select or update

cursors 5-21
6 Informix Guide to SQL: Tutorial

Index 7

Opening a cursor 5-21, 5-24
OR logical operator 2-36
OR relational operator 2-33
ORDER BY keywords

and GLS 2-25
ascending order 2-14
DESC keyword 2-14, 2-25
display label with 2-56
multiple columns 2-15
relation to GROUP BY 3-6
restrictions in INSERT 4-11
restrictions with FOR

UPDATE 6-8
select columns by number 2-24
sorting rows 2-13

Outer join Intro-7, 3-20
Output from TRACE

statement 9-14
Owner-privileged procedure 8-17

P
Page lock 7-10
Parameter, to a stored

procedure 8-29
Parts explosion 5-27
Performance

depends on concurrency 7-3
increasing with stored

procedures 8-4
Platform icons Intro-10
PREPARE statement

description of 5-30
error return in SQLERRD 5-10
multiple SQL statements 5-31

Primary key
definition of 4-21
in fragmented table 3-15

Primary key constraint, definition
of 4-23

Printed manuals Intro-13
Privilege

database-level 4-17
DBA-privileged procedures 8-17
default for stored

procedures 8-18
displaying 4-19

Execute 8-18
needed

to modify data 4-17
on stored procedures 8-17
overview 1-9
owner-privileged

procedures 8-17
revoking on stored

procedure 8-20
Product icons Intro-10
Program group

Documentation notes Intro-14
Release notes Intro-14

Projection, definition of 2-7
Project, description of 1-14
Promotable lock 7-7, 7-11
PUT statement

constant data with 6-12
count of rows inserted 6-11
sends returned data to buffer 6-10

Q
Qualifier, existential 3-36
Query

audit 3-39
compound 3-40
cyclic 4-26
self-referencing 4-26
stated in terms of data model 1-7

R
RAISE EXCEPTION statement,

exiting a loop 8-27
RANGE function, as aggregate

function 2-60
Read Committed isolation level

(ANSI) 7-14
Read Uncommitted isolation level

(ANSI) 7-14
Recursion, in a stored

procedure 8-29
Recursive relationship, example

of 5-27
Reentrant trigger, description

of 9-13
REFERENCING clause 9-9

Referential constraint, definition
of 4-23

Referential integrity, definition
of 4-22

Related reading Intro-15
Relational database, definition

of 1-11
Relational model

description of 1-11
join 2-8
projection 2-6
selection 2-6

Relational operation 2-5
Relational operator

BETWEEN 2-32
EXISTS 3-31
IN 3-31
in a WHERE clause 2-29 to 2-31
LIKE 2-37
NOT 2-32
NULL 2-35
OR 2-33

Release notes
location of Intro-14
program item Intro-14

Repeatable Read isolation level
(Informix and ANSI) 7-17

REPLACE function, as string
manipulation function 2-74

Replication
of data 4-35
transparency 4-36

RETURN statement, exiting a
loop 8-27

REVOKE statement, in embedded
SQL 5-34 to 5-36

ROLLBACK WORK statement
closes cursors 7-21
releases locks 7-11, 7-21
setting SQLCODE 6-5

Row
definition of 1-13, 2-5
deleting 4-4
finding number of rows

processed 2-82
finding rows that a user

modified 3-18
in relational model 1-13

inserting 4-7
specifying number of rows

returned with FIRST
clause 2-46

Row lock 7-10
Rowid

using in self-join 3-15
using to find modified rows 3-18
using to locate internal row

numbers 3-16
RPAD function, as string

manipulation function 2-78

S
Sample-code conventions Intro-11
Scroll cursor

active set 5-25
definition of 5-23

SCROLL keyword, using in
DECLARE 5-24

Select cursor
opening 5-21
using 5-21

Select list
display label 2-52
expressions in 2-49
functions in 2-57 to 2-82
labels in 3-44
selecting all columns 2-12
selecting specific columns 2-18
specifying a substring in 2-27

SELECT statement
active set 2-28
advanced 3-4 to 3-52
aggregate functions in 2-57, 2-68
alias names 2-96
and end-of-data return code 6-14
assigning values with 8-25
compound query 3-40
cursor for 5-20
date-oriented functions in 2-63
display label 2-52
DISTINCT keyword 2-20
embedded 5-14 to 5-17
FIRST clause 2-46
for joined tables 2-100
for single tables 2-11 to 2-82

functions 2-57 to 2-82
GROUP BY clause 3-4
HAVING clause 3-8
INTO clause with ESQL 5-14
INTO TEMP clause 2-100
join 2-90 to 2-96
multiple-table 2-88
natural join 2-93
ORDER BY clause 2-13
outer join 3-20 to 3-27
rowid 3-20
SELECT clause 2-12 to 2-28
selecting a substring 2-27
selecting expressions 2-49
selection list 2-12
self-join 3-11
simple 2-3 to 2-100
single-table 2-11
singleton 2-28
subquery 3-30 to 3-39
UNION operator 3-40
using

for join 2-8
for projection 2-7
for selection 2-6

Selection, description of 2-6
Select, description of 1-14
Self-join

assigning column names with
INTO TEMP 3-12

description of 3-11
Self-referencing query 3-11, 4-26
Semantic integrity 4-21
Sequential cursor, definition

of 5-23
SERIAL data type

finding last SERIAL value
inserted 2-82

generated number in
SQLERRD 5-10

inserting a starting value 4-8
Serializable isolation level (ANSI),

description of 7-17
Session ID, returned by DBINFO

function 2-83
SET clause 4-15
Set difference 3-50
Set intersection 3-48

SET ISOLATION statement
compared with SET

TRANSACTION
statement 7-12

description of 7-12
SET keyword, use in UPDATE 4-13
SET LOCK MODE statement,

description of 7-19
Set operation 3-39

difference 3-50
intersection 3-48
union 3-40

SET TRANSACTION statement,
compared with SET
ISOLATION statement 7-13

Singleton SELECT statement 2-28
SITENAME function, in SELECT

statement 2-81, 3-19
Software dependencies Intro-4
SOME keyword, beginning a

subquery 3-31
Sorting

as affected by a locale 2-25
effects of GLS 2-25
nested 2-15
with ORDER BY 2-14

SPL
definition of 8-3
flow control statements 8-26
global variable in 8-20
local variable in 8-20
program variable 5-6
relation to SQL 8-3

SQL
Application Programming

Interfaces 5-4
compliance of statements with

ANSI standard 1-16
cursor 5-20
description of 1-15
error handling 5-17
history 1-15
Informix SQL and ANSI SQL 1-16
interactive use 1-18
standardization 1-15

SQL Communications Area
(SQLCA)

altered by end of transaction 6-5
8 Informix Guide to SQL: Tutorial

description of 5-8
inserting rows 6-11

SQLCODE field
after opening cursor 5-21
and FLUSH operation 6-11
description of 5-9
end of data on SELECT only 6-14
end of data signalled 5-17
set by DELETE statement 6-4
set by PUT statement 6-11

SQLERRD array
count of deleted rows 6-4
count of inserted rows 6-11
count of rows 6-14
description of 5-10
syntax of naming 5-8

SQLERRM character array 5-13
SQLSTATE variable

in non-ANSI-compliant
databases 5-18

using with a cursor 5-21
SQLWARN array

description of 5-11
syntax of naming 5-8
with PREPARE 5-31

Standard deviation, aggregate
function 2-61

Static SQL 5-5
STDEV function, as aggregate

function 2-61
Stored procedure

altering 8-16
as triggered action 9-11
branching 8-26
comments in 8-8
creating from an embedded

language 8-7
creating from DB-Access 8-6
DBA-privileged, using with

triggers 8-17
debugging 8-14
default privileges 8-18
DEFINE statement 8-21
definition of 8-4
displaying contents 8-11
displaying documentation 8-11
executing 8-12
general programming 1-19

granting privileges on 8-18, 8-19
header 8-30
in SELECT statements 2-86
introduction to 8-3
looping 8-27
name confusion with SQL

functions 8-25
nesting and privileges 8-19
owner-privileged 8-17
privileges necessary at

execution 8-18
program flow control 8-26
recursion 8-29
REFERENCES clause 8-22
returning values 8-30
revoking privileges on 8-20
SPL expressions 8-25
tracing triggered actions 9-13
use 8-4
variable 8-20
variables, scope of 8-22

Stored procedure language. See
SPL.

stores7 database Intro-5
Subquery

correlated 3-30, 4-26
in DELETE statement 4-6
in SELECT statement 3-30 to 3-39
in UPDATE statement

with SET clause 4-14
with WHERE clause 4-13

Subscripting
in a WHERE clause 2-44
SPL variables 8-22

Subservient table 3-20
SUBSTR function, as string

manipulation function 2-76
Substring 2-27, 8-22
SUBSTRING function, as string

manipulation function 2-75
SUM function, as aggregate

function 2-60
System catalog

privileges in 4-19
querying 4-19
sysprocbody 8-11
systabauth 4-19

System descriptor area, description
of 5-32

T
Table

accessing 2-101
accessing a table not in the current

database 2-38
description of 1-12
in relational model 1-12
loading data

with external tables 4-34
with onload utility 4-34

lock 7-8
logging 4-31
names 2-101
nonlogging 4-31

TABLE lock mode Intro-7, 7-9
Temporary table

and active set of cursor 5-25
assigning column names 3-12
example 4-12

TEXT data type
restrictions

with GROUP BY 3-6
with LIKE or MATCHES 2-37
with relational expression 2-29

using LENGTH function on 2-80
TEXT value, displaying 2-11
Time function, description of 2-63
TODAY function, in constant

expression 2-81, 4-9
TO_CHAR function, as conversion

function 2-69
TO_DATE function, as conversion

function 2-70
TRACE statement

debugging a stored
procedure 8-14

output from 9-14
Transaction

cursors closed at end 7-21
description of 4-28
example with DELETE 6-5
locks held to end of 7-11
locks released at end of 7-11, 7-21
transaction log 4-30
use signalled in SQLWARN 5-11

Transaction logging
contents of log 4-33
description of 4-30
Index 9

Trigger
creating 9-4
definition of 9-3
disabled mode 4-28
enabled mode 4-28
name assigning 9-5
reentrant, description of 9-13
when to use 9-3

Trigger event
definition of 9-5
example of 9-5

Triggered action
BEFORE and AFTER 9-7
FOR EACH ROW 9-9
generating an error message 9-15
in relation to triggering

statement 9-6
statements 9-3
tracing 9-13
using 9-7
using stored procedures 9-11
WHEN condition 9-10

Truncation, signalled in
SQLWARN 5-12

U
UNION operator

description of 3-40
display labels with 3-44

Union set operation 3-40
UNIQUE keyword, in SELECT

statement 2-20
Update cursor, definition of 6-15
UPDATE statement

and end of data 6-14
description of 4-12
embedded 6-15 to 6-17
multiple assignment 4-15
number of rows 5-10
preparing 5-31
restrictions on subqueries 4-15
using a join to update a

column 4-17
UPPER function, as string

manipulation function 2-72
USER function, in expression 2-80,

3-18

USING keyword, in EXECUTE
statement 5-31

Utility program
onload 4-34
onunload 4-34

V
VALUES clause, in INSERT

statement 4-7
VARCHAR data type, using

LENGTH function on 2-80
VARCHAR value, displaying 2-11
Variable

global, in SPL 8-20, 8-21
in SPL 8-20
scope in SPL 8-22
with same name as a

keyword 8-23
VARIANCE function, as aggregate

function 2-62
Version number, returned by

DBINFO function 2-83
Violations table, using with filtering

mode 4-27

W
Warnings, with stored procedures

at compile time 8-10
WEEKDAY function, as time

function 2-63, 2-66
WHERE clause

Boolean expression in 2-36
comparison condition 2-29
date-oriented functions in 2-66
host variables in 5-15
in DELETE 4-4 to 4-7
relational operators 2-29
selecting rows 2-28
subqueries in 3-31
subscripting 2-44
testing a subscript 2-44
wildcard comparisons 2-37
with NOT keyword 2-32
with OR keyword 2-33

WHERE CURRENT OF clause
in DELETE statement 6-7
in UPDATE statement 6-15

WHERE keyword
null data tests 2-35
range of values 2-32

WHILE statement, looping in a
stored procedure 8-27

Wildcard character, asterisk 2-12
Wildcard comparison in WHERE

clause 2-37 to 2-44
WITH HOLD keywords, declaring

a hold cursor 7-23
WITH LISTING IN keywords,

warnings in a stored
procedure 8-10

X
X/Open compliance

level Intro-15

Y
YEAR function, as time

function 2-63

Symbols
!=, not equal, relational

operator 2-31
<, less than, relational

operator 2-31
<=, less than or equal to, relational

operator 2-32
=, equals, relational operator 2-30,

2-90
>, greater than, relational

operator 2-31
>=, greater than or equal to,

relational operator 2-32
?, question mark

as placeholder in PREPARE 5-30
10 Informix Guide to SQL: Tutorial

	Answers OnLine Web Site
	Table of Contents
	Introduction
	About This Manual
	Types of Users
	Software Dependencies
	Assumptions About Your Locale
	Demonstration Databases

	New Features
	New Features in Version 7.3
	New Features in Version 8.2

	Documentation Conventions
	Typographical Conventions
	Icon Conventions
	Comment Icons
	Feature, Product, and Platform Icons
	Compliance Icons

	Sample-Code Conventions

	Additional Documentation
	On-Line Manuals
	Printed Manuals
	Error Message Files
	Documentation Notes, Release Notes, Machine Notes
	Related Reading

	Compliance with Industry Standards
	Informix Welcomes Your Comments

	Database Concepts
	Illustration of a Data Model
	Storing Data
	Querying Data
	Modifying Data

	Concurrent Use and Security
	Controlling Database Use
	Centralized Management

	Important Database Terms
	The Relational Model
	Tables
	Columns
	Rows
	Operations on Tables

	Structured Query �Language
	Standard SQL
	Informix SQL and ANSI SQL
	ANSI-Compliant Databases
	GLS Databases

	Database Software
	Applications
	Database Server
	Interactive SQL
	General �Programming

	Summary

	Composing Simple SELECT Statements
	Introducing the SELECT Statement
	Some Basic Concepts
	Privileges
	Relational Operations
	Selection and Projection
	Joining

	The Forms of SELECT
	Special Data Types

	Single-Table SELECT Statements
	Selecting All Columns and Rows
	Using the Asterisk Symbol (*)
	Reordering the Columns
	Sorting the Rows

	Selecting Specific Columns
	ORDER BY and Non-English Data
	Selecting Substrings

	Using the WHERE Clause
	Creating a Comparison Condition
	Using Variable-Text Searches
	Using Exact-Text Comparisons
	Using a Single-Character Wildcard
	MATCHES and Non-English Data
	Comparing for Special Characters

	Using a FIRST Clause to Select Specific Rows
	FIRST Clause Without an ORDER BY Clause
	FIRST Clause with an ORDER BY Clause
	FIRST Clause in a Union Query

	Expressions and Derived Values
	Arithmetic Expressions
	CASE Expressions
	Sorting on Derived Columns

	Using �Functions in SELECT �Statements
	Aggregate �Functions
	Time Functions
	Date-Conversion �Functions
	String Manipulation Functions
	Other Functions

	Using Stored Procedures in SELECT Statements

	Multiple-Table SELECT Statements
	Creating a �Cartesian �Product
	Creating a Join
	Equi-Join
	Natural Join
	Multiple-Table Join

	Some Query Shortcuts
	Using Aliases
	The INTO TEMP Clause

	Selecting Tables from a Database Other Than the Cu...
	Summary

	Composing Advanced SELECT Statements
	Using the GROUP BY and HAVING Clauses
	Using the GROUP BY Clause
	Using the HAVING Clause

	Creating Advanced Joins
	Self-Joins
	Using Rowid Values

	Outer Joins
	Simple Join
	Simple Outer Join on Two Tables
	Outer Join for a Simple Join to a Third Table
	Outer Join of Two Tables to a Third Table
	Joins That Combine Outer Joins

	Subqueries in SELECT Statements
	Using ALL
	Using ANY
	Single-Valued Subqueries
	Correlated Subqueries
	Using EXISTS

	Set �Operations
	Union
	Intersection
	Difference

	Summary

	Modifying Data
	Statements That Modify Data
	Deleting Rows
	Deleting All Rows of a Table
	Deleting a Known Number of Rows
	Deleting an Unknown Number of Rows
	Complicated Delete Conditions

	Inserting Rows
	Single Rows
	Possible Column Values
	Listing Specific Column Names

	Multiple Rows and Expressions
	Restrictions on the Insert Selection

	Updating Rows
	Selecting Rows to Update
	Updating with Uniform Values
	Restrictions on Updates
	Updating with Selected Values
	Using a CASE Expression to Update a Column
	Using a Join to Update a Column

	Privileges on a Database
	Database-Level Privileges
	Table-Level Privileges
	Displaying Table Privileges

	Data Integrity
	Entity Integrity
	Semantic Integrity
	Referential Integrity
	Using the ON DELETE CASCADE Option
	Example of Cascading Deletes
	Restrictions on Cascading Deletes

	Object Modes and Violation Detection
	Object Modes for Constraints
	Object Modes for Unique Indexes
	Object Modes for Triggers
	SQL Statements and Examples

	Interrupted Modifications
	Transactions
	Transaction Logging
	Transaction Logging for Informix Dynamic Server wi...
	Logging and Cascading Deletes

	Specifying Transactions

	Backups and Logs with Informix Database Servers
	Concurrency and Locks
	Data Replication
	Informix Database Server Data Replication

	Summary

	Programming with SQL
	SQL in �Programs
	SQL in SQL APIs
	SQL in Application Languages
	Static �Embedding
	Dynamic �Statements
	Program Variables and Host Variables

	Calling the Database Server
	SQL Communications Area
	SQLCODE Field �
	End of Data
	Negative Codes

	SQLERRD Array
	SQLWARN Array
	SQLERRM Character Array
	SQLSTATE Value

	Retrieving Single Rows
	Data-Type �Conversion
	Working with Null Data
	Dealing with Errors
	End of Data
	End of Data with Databases That Are Not ANSI Compl...
	Serious Errors
	Interpreting End of Data with Aggregate Functions
	Using Default Values

	Retrieving Multiple Rows
	Declaring a Cursor
	Opening a �Cursor
	Fetching Rows
	Detecting End of Data
	Locating the INTO Clause

	Cursor Input Modes
	Active Set of a Cursor
	Creating the Active Set
	Active Set for a Sequential Cursor
	Active Set for a Scroll Cursor
	Active Set and Concurrency

	Using a Cursor: A Parts �Explosion

	Dynamic SQL
	Preparing a Statement
	Executing Prepared SQL
	Dynamic Host Variables
	Freeing Prepared Statements
	Quick Execution

	Embedding Data-Definition Statements
	Embedding Grant and Revoke Privileges
	Summary

	Modifying Data �Through SQL �Programs
	Using �DELETE
	Direct Deletions
	Errors During Direct �Deletions
	Using Transaction Logging
	Coordinated �Deletions

	Deleting with a Cursor

	Using �INSERT
	Using an Insert Cursor
	Declaring an Insert Cursor
	Inserting with a �Cursor
	Status Codes After PUT and FLUSH

	Rows of Constants
	An Insert Example

	Using �UPDATE
	Using an Update Cursor
	The Purpose of the Keyword UPDATE
	Updating Specific Columns
	UPDATE Keyword Not Always Needed

	Cleaning Up a Table

	Summary

	Programming for a Multiuser Environment
	Concurrency and Performance
	Locking and I�ntegrity
	Locking and �Performance
	Concurrency Issues
	How Locks Work
	Kinds of Locks
	Lock Scope
	Database Locks
	Table Locks
	TABLE Lock Mode for Informix Dynamic Server with A...
	Page, Row, and Key Locks

	Duration of a Lock
	Locks While �Modifying

	Setting the I�solation Level
	Comparing SET TRANSACTION with SET ISOLATION
	ANSI Read �Uncommitted and Informix Dirty Read Iso...
	ANSI Read Committed and Informix Committed Read Is...
	Informix Cursor Stability �Isolation
	ANSI Serializable, ANSI Repeatable Read, and Infor...

	Controlling Data Modification with Access Modes
	Setting the Lock Mode
	Waiting for Locks
	Not Waiting for Locks
	Waiting a Limited Time
	Handling a Deadlock
	Handling External Deadlock

	Simple Concurrency
	Hold Cursors
	Summary

	Creating and Using Stored Procedures
	Introduction to Stored Procedures and SPL
	What You Can Do with Stored Procedures
	Relationship Between SQL and a Stored Procedure

	Stored-Procedure Behavior for Dynamic Server with ...
	Creating and Using Stored Procedures
	Creating a Procedure
	Creating a Procedure in a Program
	Commenting and Documenting a Procedure
	Diagnosing Compile-Time Errors
	Using DB-Access to Find Syntax Errors in a Procedu...
	Using an SQL API to Find Syntax Errors in a Proced...

	Looking at Compile-Time Warnings
	Location of the Listing File
	Viewing the Listing File

	Generating the Text or Documentation
	Looking at the Procedure Text
	Looking at the Procedure Documentation

	Executing a Procedure
	Executing a Stored Procedure Dynamically
	Debugging a Procedure
	Re-creating a Procedure

	Privileges on Stored Procedures
	Privileges Necessary at Creation
	Privileges Necessary at Execution
	Owner-Privileged Procedures
	DBA-Privileged Procedures
	Privileges and Nested Procedures

	Revoking Privileges

	Variables and Expressions
	SPL Variables
	Local Variables
	Global Variables
	Format of Variables
	Defining Variables
	Data Types for Variables
	Using Subscripts with Variables
	Scope of Variables
	Variable and Keyword Ambiguity

	SPL Expressions
	Assigning Values to Variables

	Program Flow Control
	Branching
	Looping
	Function Handling
	Calling Procedures Within a Procedure
	Running an Operating-System Command from a Procedu...
	Calling a Procedure Recursively

	Passing Information to and from a Procedure
	Returning Results
	Specifying Return Data Types
	Returning the Value
	Returning More Than One Set of Values from a Proce...

	Exception Handling
	Trapping an Error and Recovering
	Scope of Control of an ON EXCEPTION Statement
	User-Generated Exceptions
	Simulating SQL Errors
	Using RAISE EXCEPTION to Exit Nested Code

	Summary

	Creating and Using Triggers
	When to Use Triggers
	How to Create a Trigger
	Assigning a Trigger Name
	Specifying the Trigger Event
	Defining the Triggered Actions
	A Complete CREATE TRIGGER Statement

	Using Triggered Actions
	Using BEFORE and AFTER Triggered Actions
	Using FOR EACH ROW Triggered Actions
	Using the REFERENCING Clause
	Using the WHEN Condition

	Using Stored Procedures as Triggered Actions
	Passing Data to a Stored Procedure
	Using the Stored Procedure Language
	Updating Nontriggering Columns with Data from a St...

	Reentrant Triggers for Dynamic Server
	Tracing Triggered Actions
	Example of TRACE Statements in a Stored Procedure
	Example of TRACE Output

	Generating Error Messages
	Applying a Fixed Error Message
	Generating a Variable Error Message

	Summary

	Index

